不同调制方式下差模Zeta逆变器的性能评价

Kartik Tank, M. Garg, N. Gupta, B. L. Narasimharaju
{"title":"不同调制方式下差模Zeta逆变器的性能评价","authors":"Kartik Tank, M. Garg, N. Gupta, B. L. Narasimharaju","doi":"10.1109/SeFeT55524.2022.9909249","DOIUrl":null,"url":null,"abstract":"Conventionally, two stages are used for DC to AC voltage conversion. In the first stage, the boost converter provides voltage gain, and the H-bridge inverter provides the DC-AC conversion in the second stage. The two-stage conversion process can be reduced to a single-stage with the help of a new breed of inverter topology, namely differential mode inverter (DMI). For the same power rating, the single-stage DMI increases the energy density and compactness of the system compared to the two-stage. In DMI, using a specific DC-DC converter module, a higher voltage gain can be obtained. In this paper, a DC-DC Zeta converter based DMI is presented. The analysis of single-phase differential mode Zeta inverter (DMZI) is carried out with two different modulation schemes, namely Continuous mode modulation scheme (CMS) and Discontinuous mode modulation scheme (DMS). The steady-state analysis is performed to investigate the eight-order system. Generalized analytical expressions are derived, which are applicable to both modulation schemes. Also, a comparative analysis is presented to compare both modulation schemes by pointing out the requirement of maximum duty cycle, the voltage stress on the semiconductor switches, and system losses. Finally, MATLAB/SIMULINK results are provided to verify the analytical expressions.","PeriodicalId":262863,"journal":{"name":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of Differential Mode Zeta Inverter using Various Modulation Schemes\",\"authors\":\"Kartik Tank, M. Garg, N. Gupta, B. L. Narasimharaju\",\"doi\":\"10.1109/SeFeT55524.2022.9909249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventionally, two stages are used for DC to AC voltage conversion. In the first stage, the boost converter provides voltage gain, and the H-bridge inverter provides the DC-AC conversion in the second stage. The two-stage conversion process can be reduced to a single-stage with the help of a new breed of inverter topology, namely differential mode inverter (DMI). For the same power rating, the single-stage DMI increases the energy density and compactness of the system compared to the two-stage. In DMI, using a specific DC-DC converter module, a higher voltage gain can be obtained. In this paper, a DC-DC Zeta converter based DMI is presented. The analysis of single-phase differential mode Zeta inverter (DMZI) is carried out with two different modulation schemes, namely Continuous mode modulation scheme (CMS) and Discontinuous mode modulation scheme (DMS). The steady-state analysis is performed to investigate the eight-order system. Generalized analytical expressions are derived, which are applicable to both modulation schemes. Also, a comparative analysis is presented to compare both modulation schemes by pointing out the requirement of maximum duty cycle, the voltage stress on the semiconductor switches, and system losses. Finally, MATLAB/SIMULINK results are provided to verify the analytical expressions.\",\"PeriodicalId\":262863,\"journal\":{\"name\":\"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SeFeT55524.2022.9909249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SeFeT55524.2022.9909249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统上,直流到交流电压转换使用两个级。在第一级,升压变换器提供电压增益,h桥逆变器在第二级提供DC-AC转换。借助一种新型逆变器拓扑,即差分模式逆变器(DMI),可以将两级转换过程减少到单级。对于相同的额定功率,与两级DMI相比,单级DMI增加了系统的能量密度和紧凑性。在DMI中,使用特定的DC-DC转换器模块,可以获得更高的电压增益。本文提出了一种基于DMI的DC-DC Zeta变换器。采用连续模式调制方案(CMS)和不连续模式调制方案(DMS)两种不同的调制方案对单相差模Zeta逆变器(DMZI)进行了分析。对八阶系统进行了稳态分析。导出了适用于两种调制方案的广义解析表达式。同时,通过对最大占空比、开关电压应力和系统损耗的要求,对两种调制方案进行了比较分析。最后,给出了MATLAB/SIMULINK实验结果对解析表达式进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Evaluation of Differential Mode Zeta Inverter using Various Modulation Schemes
Conventionally, two stages are used for DC to AC voltage conversion. In the first stage, the boost converter provides voltage gain, and the H-bridge inverter provides the DC-AC conversion in the second stage. The two-stage conversion process can be reduced to a single-stage with the help of a new breed of inverter topology, namely differential mode inverter (DMI). For the same power rating, the single-stage DMI increases the energy density and compactness of the system compared to the two-stage. In DMI, using a specific DC-DC converter module, a higher voltage gain can be obtained. In this paper, a DC-DC Zeta converter based DMI is presented. The analysis of single-phase differential mode Zeta inverter (DMZI) is carried out with two different modulation schemes, namely Continuous mode modulation scheme (CMS) and Discontinuous mode modulation scheme (DMS). The steady-state analysis is performed to investigate the eight-order system. Generalized analytical expressions are derived, which are applicable to both modulation schemes. Also, a comparative analysis is presented to compare both modulation schemes by pointing out the requirement of maximum duty cycle, the voltage stress on the semiconductor switches, and system losses. Finally, MATLAB/SIMULINK results are provided to verify the analytical expressions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信