L. Demkiv, M. Ruffo, Giuseppe Silano, J. Bednář, M. Saska
{"title":"立体热视觉在MAVs电力线初检中的应用","authors":"L. Demkiv, M. Ruffo, Giuseppe Silano, J. Bednář, M. Saska","doi":"10.1109/AIRPHARO52252.2021.9571025","DOIUrl":null,"url":null,"abstract":"An application of stereo thermal vision to perform preliminary inspection operations of electrical power lines by a particular class of small Unmanned Aerial Vehicles (UAVs), aka Micro Unmanned Aerial Vehicles (MAVs), is presented in this paper. The proposed hardware and software setup allows the detection of overheated power equipment, one of the major causes of power outages. The stereo vision complements the GPS information by finely detecting the potential source of damage while also providing a measure of the harm extension. The reduced sizes and the light weight of the vehicle enable to survey areas otherwise difficult to access with standard UAVs. Gazebo simulations and real flight experiments demonstrate the feasibility and effectiveness of the proposed setup.","PeriodicalId":415722,"journal":{"name":"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Application of Stereo Thermal Vision for Preliminary Inspection of Electrical Power Lines by MAVs\",\"authors\":\"L. Demkiv, M. Ruffo, Giuseppe Silano, J. Bednář, M. Saska\",\"doi\":\"10.1109/AIRPHARO52252.2021.9571025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An application of stereo thermal vision to perform preliminary inspection operations of electrical power lines by a particular class of small Unmanned Aerial Vehicles (UAVs), aka Micro Unmanned Aerial Vehicles (MAVs), is presented in this paper. The proposed hardware and software setup allows the detection of overheated power equipment, one of the major causes of power outages. The stereo vision complements the GPS information by finely detecting the potential source of damage while also providing a measure of the harm extension. The reduced sizes and the light weight of the vehicle enable to survey areas otherwise difficult to access with standard UAVs. Gazebo simulations and real flight experiments demonstrate the feasibility and effectiveness of the proposed setup.\",\"PeriodicalId\":415722,\"journal\":{\"name\":\"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIRPHARO52252.2021.9571025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIRPHARO52252.2021.9571025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Application of Stereo Thermal Vision for Preliminary Inspection of Electrical Power Lines by MAVs
An application of stereo thermal vision to perform preliminary inspection operations of electrical power lines by a particular class of small Unmanned Aerial Vehicles (UAVs), aka Micro Unmanned Aerial Vehicles (MAVs), is presented in this paper. The proposed hardware and software setup allows the detection of overheated power equipment, one of the major causes of power outages. The stereo vision complements the GPS information by finely detecting the potential source of damage while also providing a measure of the harm extension. The reduced sizes and the light weight of the vehicle enable to survey areas otherwise difficult to access with standard UAVs. Gazebo simulations and real flight experiments demonstrate the feasibility and effectiveness of the proposed setup.