{"title":"未改性和热改性AlSi12合金液固复合铸造AZ91/AlSi12双金属的结合区表征","authors":"R. Mola, T. Bucki","doi":"10.5545/sv-jme.2020.6703","DOIUrl":null,"url":null,"abstract":"Liquid-solid compound casting was used to produce two types of AZ91/AlSi12 joints. The magnesium alloy was the cast material poured onto a solid aluminium alloy insert with an unmodified or modified structure. The bonding zone obtained for the unmodified insert was not uniform in thickness. There was a eutectic region (Mg17Al12 + a solid solution of Al in Mg) in the area closest to the AZ91. The region adjacent to the AlSi12 had a non-uniform structure with partly reacted Si particles surrounded by the Mg2Si phase and agglomerates of Mg2Si particles unevenly distributed in the Mg-Al intermetallic phases matrix. Cracks were detected in this region. In the AZ91/AlSi12 joint produced with a thermally modified AlSi12 insert, the bonding zone was uniform in thickness. The region closest to the AZ91 alloy also had a eutectic structure. However, significant microstructural changes were reported in the region adjacent to the modified AlSi12 alloy. The microstructure of the region was uniform with no cracks; the fine Mg2Si particles were evenly distributed over the Mg-Al intermetallic phase matrix. The study revealed that in both cases the microhardness of the bonding zone was several times higher than those of the individual alloys; however, during indenter loading, the bonding zone fabricated from modified AlSi12 alloy was less prone to cracking.","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Characterization of the Bonding Zone in AZ91/AlSi12 Bimetals Fabricated by Liquid-Solid Compound Casting Using Unmodified and Thermally Modified AlSi12 Alloy\",\"authors\":\"R. Mola, T. Bucki\",\"doi\":\"10.5545/sv-jme.2020.6703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid-solid compound casting was used to produce two types of AZ91/AlSi12 joints. The magnesium alloy was the cast material poured onto a solid aluminium alloy insert with an unmodified or modified structure. The bonding zone obtained for the unmodified insert was not uniform in thickness. There was a eutectic region (Mg17Al12 + a solid solution of Al in Mg) in the area closest to the AZ91. The region adjacent to the AlSi12 had a non-uniform structure with partly reacted Si particles surrounded by the Mg2Si phase and agglomerates of Mg2Si particles unevenly distributed in the Mg-Al intermetallic phases matrix. Cracks were detected in this region. In the AZ91/AlSi12 joint produced with a thermally modified AlSi12 insert, the bonding zone was uniform in thickness. The region closest to the AZ91 alloy also had a eutectic structure. However, significant microstructural changes were reported in the region adjacent to the modified AlSi12 alloy. The microstructure of the region was uniform with no cracks; the fine Mg2Si particles were evenly distributed over the Mg-Al intermetallic phase matrix. The study revealed that in both cases the microhardness of the bonding zone was several times higher than those of the individual alloys; however, during indenter loading, the bonding zone fabricated from modified AlSi12 alloy was less prone to cracking.\",\"PeriodicalId\":135907,\"journal\":{\"name\":\"Strojniški vestnik – Journal of Mechanical Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strojniški vestnik – Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5545/sv-jme.2020.6703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniški vestnik – Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5545/sv-jme.2020.6703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of the Bonding Zone in AZ91/AlSi12 Bimetals Fabricated by Liquid-Solid Compound Casting Using Unmodified and Thermally Modified AlSi12 Alloy
Liquid-solid compound casting was used to produce two types of AZ91/AlSi12 joints. The magnesium alloy was the cast material poured onto a solid aluminium alloy insert with an unmodified or modified structure. The bonding zone obtained for the unmodified insert was not uniform in thickness. There was a eutectic region (Mg17Al12 + a solid solution of Al in Mg) in the area closest to the AZ91. The region adjacent to the AlSi12 had a non-uniform structure with partly reacted Si particles surrounded by the Mg2Si phase and agglomerates of Mg2Si particles unevenly distributed in the Mg-Al intermetallic phases matrix. Cracks were detected in this region. In the AZ91/AlSi12 joint produced with a thermally modified AlSi12 insert, the bonding zone was uniform in thickness. The region closest to the AZ91 alloy also had a eutectic structure. However, significant microstructural changes were reported in the region adjacent to the modified AlSi12 alloy. The microstructure of the region was uniform with no cracks; the fine Mg2Si particles were evenly distributed over the Mg-Al intermetallic phase matrix. The study revealed that in both cases the microhardness of the bonding zone was several times higher than those of the individual alloys; however, during indenter loading, the bonding zone fabricated from modified AlSi12 alloy was less prone to cracking.