弦图的特征树可比性没有有限的程度

Márcia R. Cerioli, Rodrigo Fernandes Souto, Petrucio Viana
{"title":"弦图的特征树可比性没有有限的程度","authors":"Márcia R. Cerioli, Rodrigo Fernandes Souto, Petrucio Viana","doi":"10.5753/etc.2023.230521","DOIUrl":null,"url":null,"abstract":"Um grafo G é cordal comparabilidade se é simultaneamente cordal e de comparabilidade, ou seja, todo ciclo em G de tamanho pelo menos 4 possui uma corda e G admite uma orientação transitiva de suas arestas. Por ser cordal, todo grafo cordal comparabilidade possui uma árvore característica. Provamos a inexistência de um limite superior para o grau máximo de árvores características dos grafos cordais comparabilidade. Mais especificamente, provamos que para todo n ≥ 3, existe um grafo cordal comparabilidade RSn tal que sua árvore característica é única e isomorfa a K1,n. Este resultado apresenta um contraste entre os grafos cordais comparabilidade e os grafos de intervalo, outra importante subclasse de grafos cordais, que sempre possuem uma árvore característica cujo grau máximo é menor ou igual a 2.","PeriodicalId":165974,"journal":{"name":"Anais do VIII Encontro de Teoria da Computação (ETC 2023)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"As árvores características dos grafos cordais comparabilidade não possuem grau limitado\",\"authors\":\"Márcia R. Cerioli, Rodrigo Fernandes Souto, Petrucio Viana\",\"doi\":\"10.5753/etc.2023.230521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Um grafo G é cordal comparabilidade se é simultaneamente cordal e de comparabilidade, ou seja, todo ciclo em G de tamanho pelo menos 4 possui uma corda e G admite uma orientação transitiva de suas arestas. Por ser cordal, todo grafo cordal comparabilidade possui uma árvore característica. Provamos a inexistência de um limite superior para o grau máximo de árvores características dos grafos cordais comparabilidade. Mais especificamente, provamos que para todo n ≥ 3, existe um grafo cordal comparabilidade RSn tal que sua árvore característica é única e isomorfa a K1,n. Este resultado apresenta um contraste entre os grafos cordais comparabilidade e os grafos de intervalo, outra importante subclasse de grafos cordais, que sempre possuem uma árvore característica cujo grau máximo é menor ou igual a 2.\",\"PeriodicalId\":165974,\"journal\":{\"name\":\"Anais do VIII Encontro de Teoria da Computação (ETC 2023)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do VIII Encontro de Teoria da Computação (ETC 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/etc.2023.230521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do VIII Encontro de Teoria da Computação (ETC 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/etc.2023.230521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个图G是弦可比性的,如果它同时是弦可比性的,也就是说,G中每个长度至少为4的循环都有一个弦,并且G允许其边的传递方向。因为它是弦的,所以每个弦可比性图都有一个特征树。证明了弦图可比性特征树的最大度不存在上界。更具体地说,我们证明了对于每一个n≥3,都存在一个具有RSn可比性的弦图,使其特征树是唯一的且与K1,n同构的。这一结果表明了弦图的可比性与区间图的对比,区间图是弦图的另一个重要子类,它总是具有最大度小于或等于2的特征树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
As árvores características dos grafos cordais comparabilidade não possuem grau limitado
Um grafo G é cordal comparabilidade se é simultaneamente cordal e de comparabilidade, ou seja, todo ciclo em G de tamanho pelo menos 4 possui uma corda e G admite uma orientação transitiva de suas arestas. Por ser cordal, todo grafo cordal comparabilidade possui uma árvore característica. Provamos a inexistência de um limite superior para o grau máximo de árvores características dos grafos cordais comparabilidade. Mais especificamente, provamos que para todo n ≥ 3, existe um grafo cordal comparabilidade RSn tal que sua árvore característica é única e isomorfa a K1,n. Este resultado apresenta um contraste entre os grafos cordais comparabilidade e os grafos de intervalo, outra importante subclasse de grafos cordais, que sempre possuem uma árvore característica cujo grau máximo é menor ou igual a 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信