使用隐马尔可夫模型的动作序列分析:以太极拳表演为例

Jules Françoise, A. Roby-Brami, Natasha Riboud, Frédéric Bevilacqua
{"title":"使用隐马尔可夫模型的动作序列分析:以太极拳表演为例","authors":"Jules Françoise, A. Roby-Brami, Natasha Riboud, Frédéric Bevilacqua","doi":"10.1145/2790994.2791006","DOIUrl":null,"url":null,"abstract":"Movement sequences are essential to dance and expressive movement practice; yet, they remain underexplored in movement and computing research, where the focus on short gestures prevails. We propose a method for movement sequence analysis based on motion trajectory synthesis with Hidden Markov Models. The method uses Hidden Markov Regression for jointly synthesizing motion feature trajectories and their associated variances, that serves as basis for investigating performers' consistency across executions of a movement sequence. We illustrate the method with a use-case in Tai Chi performance, and we further extend the approach to cross-modal analysis of vocalized movements.","PeriodicalId":272811,"journal":{"name":"Proceedings of the 2nd International Workshop on Movement and Computing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Movement sequence analysis using hidden Markov models: a case study in Tai Chi performance\",\"authors\":\"Jules Françoise, A. Roby-Brami, Natasha Riboud, Frédéric Bevilacqua\",\"doi\":\"10.1145/2790994.2791006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Movement sequences are essential to dance and expressive movement practice; yet, they remain underexplored in movement and computing research, where the focus on short gestures prevails. We propose a method for movement sequence analysis based on motion trajectory synthesis with Hidden Markov Models. The method uses Hidden Markov Regression for jointly synthesizing motion feature trajectories and their associated variances, that serves as basis for investigating performers' consistency across executions of a movement sequence. We illustrate the method with a use-case in Tai Chi performance, and we further extend the approach to cross-modal analysis of vocalized movements.\",\"PeriodicalId\":272811,\"journal\":{\"name\":\"Proceedings of the 2nd International Workshop on Movement and Computing\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Workshop on Movement and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2790994.2791006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Workshop on Movement and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2790994.2791006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

动作序列是舞蹈和表达动作练习必不可少的;然而,在运动和计算研究中,它们仍然没有得到充分的探索,这些研究主要集中在简短的手势上。提出了一种基于隐马尔可夫模型的运动轨迹综合的运动序列分析方法。该方法使用隐马尔可夫回归联合合成运动特征轨迹及其相关方差,作为调查表演者跨动作序列执行一致性的基础。我们用太极表演的一个用例来说明这种方法,并进一步将这种方法扩展到发声动作的跨模态分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Movement sequence analysis using hidden Markov models: a case study in Tai Chi performance
Movement sequences are essential to dance and expressive movement practice; yet, they remain underexplored in movement and computing research, where the focus on short gestures prevails. We propose a method for movement sequence analysis based on motion trajectory synthesis with Hidden Markov Models. The method uses Hidden Markov Regression for jointly synthesizing motion feature trajectories and their associated variances, that serves as basis for investigating performers' consistency across executions of a movement sequence. We illustrate the method with a use-case in Tai Chi performance, and we further extend the approach to cross-modal analysis of vocalized movements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信