{"title":"CMOS上皮秒脉冲产生:超越晶体管限制的设计","authors":"Wooram Lee, F. Amoozegar, E. Afshari","doi":"10.1109/RADAR.2009.4977090","DOIUrl":null,"url":null,"abstract":"Nonlinear transmission media can be used for high amplitude, narrow pulse generation. We developed the theory of pulse generation in one- and two-dimensional transmission lattices. We used a conventional CMOS process to fabricate these lattices. Using these structures, it is possible to generate signals with a bandwidth of more than the cut-off frequency of the fastest transistor on the same process. We showed a 2-D nonlinear lattice that can generate pulses as narrow as 1psec with an amplitude of more than 3V by using nonlinear constructive interference in a conventional 130nm CMOS process.","PeriodicalId":346898,"journal":{"name":"2009 IEEE Radar Conference","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Picosecond pulse generation on CMOS: Design beyond transistor limits\",\"authors\":\"Wooram Lee, F. Amoozegar, E. Afshari\",\"doi\":\"10.1109/RADAR.2009.4977090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear transmission media can be used for high amplitude, narrow pulse generation. We developed the theory of pulse generation in one- and two-dimensional transmission lattices. We used a conventional CMOS process to fabricate these lattices. Using these structures, it is possible to generate signals with a bandwidth of more than the cut-off frequency of the fastest transistor on the same process. We showed a 2-D nonlinear lattice that can generate pulses as narrow as 1psec with an amplitude of more than 3V by using nonlinear constructive interference in a conventional 130nm CMOS process.\",\"PeriodicalId\":346898,\"journal\":{\"name\":\"2009 IEEE Radar Conference\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2009.4977090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2009.4977090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Picosecond pulse generation on CMOS: Design beyond transistor limits
Nonlinear transmission media can be used for high amplitude, narrow pulse generation. We developed the theory of pulse generation in one- and two-dimensional transmission lattices. We used a conventional CMOS process to fabricate these lattices. Using these structures, it is possible to generate signals with a bandwidth of more than the cut-off frequency of the fastest transistor on the same process. We showed a 2-D nonlinear lattice that can generate pulses as narrow as 1psec with an amplitude of more than 3V by using nonlinear constructive interference in a conventional 130nm CMOS process.