基于奇异值分解的匹配纯化

Yang Dong, D. Fan, S. Ji
{"title":"基于奇异值分解的匹配纯化","authors":"Yang Dong, D. Fan, S. Ji","doi":"10.1109/IGARSS.2016.7729725","DOIUrl":null,"url":null,"abstract":"Generally, purified algorithms of image matching points use some of the points as initial input. For the algorithms, as the purification results are quite easy to fall into a local optimum, they usually have such problems as rejecting some of correct matching points. To solve this problem, we introduce singular value decomposition model, which take the whole matches as input to obtain a more accurate result through iterative robust solving. Extensive experiments on practical images demonstrate the excellent performance of our proposed method.","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"75 2 Suppl 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matching purified based on singular value decomposition\",\"authors\":\"Yang Dong, D. Fan, S. Ji\",\"doi\":\"10.1109/IGARSS.2016.7729725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generally, purified algorithms of image matching points use some of the points as initial input. For the algorithms, as the purification results are quite easy to fall into a local optimum, they usually have such problems as rejecting some of correct matching points. To solve this problem, we introduce singular value decomposition model, which take the whole matches as input to obtain a more accurate result through iterative robust solving. Extensive experiments on practical images demonstrate the excellent performance of our proposed method.\",\"PeriodicalId\":179622,\"journal\":{\"name\":\"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"75 2 Suppl 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2016.7729725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2016.7729725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一般来说,图像匹配点的纯化算法使用其中的一些点作为初始输入。对于这些算法来说,由于净化结果很容易陷入局部最优,通常会出现拒绝一些正确匹配点的问题。为了解决这一问题,我们引入了奇异值分解模型,该模型将整个匹配作为输入,通过迭代鲁棒求解得到更精确的结果。在实际图像上的大量实验证明了该方法的优异性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matching purified based on singular value decomposition
Generally, purified algorithms of image matching points use some of the points as initial input. For the algorithms, as the purification results are quite easy to fall into a local optimum, they usually have such problems as rejecting some of correct matching points. To solve this problem, we introduce singular value decomposition model, which take the whole matches as input to obtain a more accurate result through iterative robust solving. Extensive experiments on practical images demonstrate the excellent performance of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信