{"title":"用晶体配位熔化模型计算微电子材料的表面性质","authors":"V. Bokarev, G. Krasnikov","doi":"10.29003/m2469.mmmsec-2021/57-59","DOIUrl":null,"url":null,"abstract":"In this work, it is shown that the model of coordination crystal melting makes it possible to calculate the values of the specific surface energy of elementary substances and the surface melting temperature of metals, and also relates the anisotropy of the specific surface energy of a crystal with its crystal structure, electron work function, and adhesion work.","PeriodicalId":151453,"journal":{"name":"Mathematical modeling in materials science of electronic component","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CALCULATION OF THE SURFACE PROPERTIES OF MICROELECTRONICS MATERIALS USING THE MODEL OF COORDINATION MELTING OF A CRYSTAL\",\"authors\":\"V. Bokarev, G. Krasnikov\",\"doi\":\"10.29003/m2469.mmmsec-2021/57-59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, it is shown that the model of coordination crystal melting makes it possible to calculate the values of the specific surface energy of elementary substances and the surface melting temperature of metals, and also relates the anisotropy of the specific surface energy of a crystal with its crystal structure, electron work function, and adhesion work.\",\"PeriodicalId\":151453,\"journal\":{\"name\":\"Mathematical modeling in materials science of electronic component\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical modeling in materials science of electronic component\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29003/m2469.mmmsec-2021/57-59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical modeling in materials science of electronic component","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29003/m2469.mmmsec-2021/57-59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CALCULATION OF THE SURFACE PROPERTIES OF MICROELECTRONICS MATERIALS USING THE MODEL OF COORDINATION MELTING OF A CRYSTAL
In this work, it is shown that the model of coordination crystal melting makes it possible to calculate the values of the specific surface energy of elementary substances and the surface melting temperature of metals, and also relates the anisotropy of the specific surface energy of a crystal with its crystal structure, electron work function, and adhesion work.