{"title":"DeepOPF:用于直流最优潮流的深度神经网络","authors":"Xiang Pan, Tianyu Zhao, Minghua Chen","doi":"10.1109/SmartGridComm.2019.8909795","DOIUrl":null,"url":null,"abstract":"We develop DeepOPF as a Deep Neural Network (DNN) based approach for solving direct current optimal power flow (DC-OPF) problems. DeepOPF is inspired by the observation that solving DC-OPF for a given power network is equivalent to characterizing a high-dimensional mapping between the load inputs and the dispatch and transmission decisions. We construct and train a DNN model to learn such mapping, then we apply it to obtain optimized operating decisions upon arbitrary load inputs. We adopt uniform sampling to address the over-fitting problem common in generic DNN approaches. We leverage on a useful structure in DC-OPF to significantly reduce the mapping dimension, subsequently cutting down the size of our DNN model and the amount of training data/time needed. We also design a post-processing procedure to ensure the feasibility of the obtained solution. Simulation results of IEEE test cases show that DeepOPF always generates feasible solutions with negligible optimality loss, while speeding up the computing time by two orders of magnitude as compared to conventional approaches implemented in a state-of-the-art solver.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"DeepOPF: Deep Neural Network for DC Optimal Power Flow\",\"authors\":\"Xiang Pan, Tianyu Zhao, Minghua Chen\",\"doi\":\"10.1109/SmartGridComm.2019.8909795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop DeepOPF as a Deep Neural Network (DNN) based approach for solving direct current optimal power flow (DC-OPF) problems. DeepOPF is inspired by the observation that solving DC-OPF for a given power network is equivalent to characterizing a high-dimensional mapping between the load inputs and the dispatch and transmission decisions. We construct and train a DNN model to learn such mapping, then we apply it to obtain optimized operating decisions upon arbitrary load inputs. We adopt uniform sampling to address the over-fitting problem common in generic DNN approaches. We leverage on a useful structure in DC-OPF to significantly reduce the mapping dimension, subsequently cutting down the size of our DNN model and the amount of training data/time needed. We also design a post-processing procedure to ensure the feasibility of the obtained solution. Simulation results of IEEE test cases show that DeepOPF always generates feasible solutions with negligible optimality loss, while speeding up the computing time by two orders of magnitude as compared to conventional approaches implemented in a state-of-the-art solver.\",\"PeriodicalId\":377150,\"journal\":{\"name\":\"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2019.8909795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2019.8909795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DeepOPF: Deep Neural Network for DC Optimal Power Flow
We develop DeepOPF as a Deep Neural Network (DNN) based approach for solving direct current optimal power flow (DC-OPF) problems. DeepOPF is inspired by the observation that solving DC-OPF for a given power network is equivalent to characterizing a high-dimensional mapping between the load inputs and the dispatch and transmission decisions. We construct and train a DNN model to learn such mapping, then we apply it to obtain optimized operating decisions upon arbitrary load inputs. We adopt uniform sampling to address the over-fitting problem common in generic DNN approaches. We leverage on a useful structure in DC-OPF to significantly reduce the mapping dimension, subsequently cutting down the size of our DNN model and the amount of training data/time needed. We also design a post-processing procedure to ensure the feasibility of the obtained solution. Simulation results of IEEE test cases show that DeepOPF always generates feasible solutions with negligible optimality loss, while speeding up the computing time by two orders of magnitude as compared to conventional approaches implemented in a state-of-the-art solver.