容器类程序的数据覆盖测试

P. Netisopakul, L. White, John Morris, D. Hoffman
{"title":"容器类程序的数据覆盖测试","authors":"P. Netisopakul, L. White, John Morris, D. Hoffman","doi":"10.1109/ISSRE.2002.1173244","DOIUrl":null,"url":null,"abstract":"For the testing of container classes and the algorithms or programs that operate on the data in a container, these data have the property of being homogeneous throughout the container. We have developed an approach for this situation called data coverage testing, where automated test generation can systematically generate increasing test data size. Given a program and a test model, it can be theoretically shown that there exists a sufficiently large test data set size N, such that testing with a data set size larger than N does not detect more faults. A number of experiments have been conducted using a set of C++ STL programs, comparing data coverage testing with two other testing strategies: statement coverage and random generation. These experiments validate the theoretical analysis for data coverage, confirming the predicted sufficiently large N for each program.","PeriodicalId":159160,"journal":{"name":"13th International Symposium on Software Reliability Engineering, 2002. Proceedings.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Data coverage testing of programs for container classes\",\"authors\":\"P. Netisopakul, L. White, John Morris, D. Hoffman\",\"doi\":\"10.1109/ISSRE.2002.1173244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the testing of container classes and the algorithms or programs that operate on the data in a container, these data have the property of being homogeneous throughout the container. We have developed an approach for this situation called data coverage testing, where automated test generation can systematically generate increasing test data size. Given a program and a test model, it can be theoretically shown that there exists a sufficiently large test data set size N, such that testing with a data set size larger than N does not detect more faults. A number of experiments have been conducted using a set of C++ STL programs, comparing data coverage testing with two other testing strategies: statement coverage and random generation. These experiments validate the theoretical analysis for data coverage, confirming the predicted sufficiently large N for each program.\",\"PeriodicalId\":159160,\"journal\":{\"name\":\"13th International Symposium on Software Reliability Engineering, 2002. Proceedings.\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"13th International Symposium on Software Reliability Engineering, 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSRE.2002.1173244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th International Symposium on Software Reliability Engineering, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.2002.1173244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

对于容器类和对容器中的数据进行操作的算法或程序的测试,这些数据在整个容器中具有同构的属性。我们已经为这种情况开发了一种称为数据覆盖测试的方法,其中自动化的测试生成可以系统地生成不断增加的测试数据大小。给定一个程序和一个测试模型,理论上可以证明存在一个足够大的测试数据集大小N,使得使用大于N的数据集进行测试并不会检测到更多的故障。使用一组c++ STL程序进行了许多实验,将数据覆盖测试与另外两种测试策略(语句覆盖和随机生成)进行了比较。这些实验验证了数据覆盖率的理论分析,证实了每个程序的预测N足够大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data coverage testing of programs for container classes
For the testing of container classes and the algorithms or programs that operate on the data in a container, these data have the property of being homogeneous throughout the container. We have developed an approach for this situation called data coverage testing, where automated test generation can systematically generate increasing test data size. Given a program and a test model, it can be theoretically shown that there exists a sufficiently large test data set size N, such that testing with a data set size larger than N does not detect more faults. A number of experiments have been conducted using a set of C++ STL programs, comparing data coverage testing with two other testing strategies: statement coverage and random generation. These experiments validate the theoretical analysis for data coverage, confirming the predicted sufficiently large N for each program.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信