*弱到范数连续映射的逼近

L. D’Ambrosio
{"title":"*弱到范数连续映射的逼近","authors":"L. D’Ambrosio","doi":"10.1006/jath.2002.3708","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to study the approximation of vector-valued mappings defined on a subset of a normed space. We investigate Korovkin-type conditions useful to recognize if a given sequence of linear operators is a so-called approximation process. First, we give a sufficient condition for this sequence to approximate the class of bounded, uniformly continuous functions. Then we present some sufficient and necessary conditions guaranteeing the approximation within the class of unbounded, *weak-to-norm continuous mappings. We also derive some estimates of the rate of convergence. We apply concrete approximation processes to derive representation formulae for semigroups of bounded linear operators.","PeriodicalId":202056,"journal":{"name":"J. Approx. Theory","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Approximation of *Weak-to-Norm Continuous Mappings\",\"authors\":\"L. D’Ambrosio\",\"doi\":\"10.1006/jath.2002.3708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to study the approximation of vector-valued mappings defined on a subset of a normed space. We investigate Korovkin-type conditions useful to recognize if a given sequence of linear operators is a so-called approximation process. First, we give a sufficient condition for this sequence to approximate the class of bounded, uniformly continuous functions. Then we present some sufficient and necessary conditions guaranteeing the approximation within the class of unbounded, *weak-to-norm continuous mappings. We also derive some estimates of the rate of convergence. We apply concrete approximation processes to derive representation formulae for semigroups of bounded linear operators.\",\"PeriodicalId\":202056,\"journal\":{\"name\":\"J. Approx. Theory\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Approx. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1006/jath.2002.3708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Approx. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1006/jath.2002.3708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文的目的是研究定义在赋范空间子集上的向量值映射的逼近性。我们研究了用于识别给定线性算子序列是否是所谓的近似过程的korovkin型条件。首先,给出了该序列近似于一类有界一致连续函数的充分条件。然后给出了在无界、弱到范数连续映射类内的逼近的充分必要条件。我们还推导了收敛速度的一些估计。应用具体的近似过程,导出了有界线性算子半群的表示公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation of *Weak-to-Norm Continuous Mappings
The purpose of this paper is to study the approximation of vector-valued mappings defined on a subset of a normed space. We investigate Korovkin-type conditions useful to recognize if a given sequence of linear operators is a so-called approximation process. First, we give a sufficient condition for this sequence to approximate the class of bounded, uniformly continuous functions. Then we present some sufficient and necessary conditions guaranteeing the approximation within the class of unbounded, *weak-to-norm continuous mappings. We also derive some estimates of the rate of convergence. We apply concrete approximation processes to derive representation formulae for semigroups of bounded linear operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信