分布式存储系统的流水线预条件共轭梯度方法

Manas Tiwari, Sathish S. Vadhiyar
{"title":"分布式存储系统的流水线预条件共轭梯度方法","authors":"Manas Tiwari, Sathish S. Vadhiyar","doi":"10.1109/HiPC50609.2020.00029","DOIUrl":null,"url":null,"abstract":"Preconditioned Conjugate Gradient (PCG) method has been one of the widely used methods for solving linear systems of equations for sparse problems. Pipelined PCG (PIPECG) attempts to eliminate the dependencies in the computations in the PCG algorithm and overlap non-dependent computations by reorganizing the traditional PCG code and using non-blocking allreduces. We have developed a novel pipelined PCG algorithm called PIPECG-OATI (One Allreduce per Two Iterations) that provides large overlap of global communication and computations at higher number of cores in distributed memory CPU systems. Our method achieves this overlapping by using iteration combination and by introducing new non-recurrence computations. We compare our method with other pipelined CG methods on a variety of problems and demonstrate that our method always gives the least runtimes. Our method gives up to 3x speedup over PCG method and 1.73x speedup over PIPECG method at large number of cores.","PeriodicalId":375004,"journal":{"name":"2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pipelined Preconditioned Conjugate Gradient Methods for Distributed Memory Systems\",\"authors\":\"Manas Tiwari, Sathish S. Vadhiyar\",\"doi\":\"10.1109/HiPC50609.2020.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preconditioned Conjugate Gradient (PCG) method has been one of the widely used methods for solving linear systems of equations for sparse problems. Pipelined PCG (PIPECG) attempts to eliminate the dependencies in the computations in the PCG algorithm and overlap non-dependent computations by reorganizing the traditional PCG code and using non-blocking allreduces. We have developed a novel pipelined PCG algorithm called PIPECG-OATI (One Allreduce per Two Iterations) that provides large overlap of global communication and computations at higher number of cores in distributed memory CPU systems. Our method achieves this overlapping by using iteration combination and by introducing new non-recurrence computations. We compare our method with other pipelined CG methods on a variety of problems and demonstrate that our method always gives the least runtimes. Our method gives up to 3x speedup over PCG method and 1.73x speedup over PIPECG method at large number of cores.\",\"PeriodicalId\":375004,\"journal\":{\"name\":\"2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HiPC50609.2020.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC50609.2020.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预条件共轭梯度法(PCG)是求解线性方程组稀疏问题的一种广泛应用的方法。流水线PCG (pipelining PCG, PIPECG)试图通过重组传统PCG代码和使用非阻塞的allreduce来消除PCG算法中计算中的依赖性和重叠非依赖性计算。我们开发了一种新的流水线PCG算法,称为pipeg - oati(每两次迭代一次Allreduce),它在分布式内存CPU系统中提供了更高核数的全局通信和计算的大重叠。我们的方法通过迭代组合和引入新的非递归计算来实现这种重叠。我们将我们的方法与其他流水线CG方法在各种问题上进行了比较,并证明我们的方法总是给出最少的运行时间。在大量核数下,我们的方法比PCG方法加速3倍,比PIPECG方法加速1.73倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pipelined Preconditioned Conjugate Gradient Methods for Distributed Memory Systems
Preconditioned Conjugate Gradient (PCG) method has been one of the widely used methods for solving linear systems of equations for sparse problems. Pipelined PCG (PIPECG) attempts to eliminate the dependencies in the computations in the PCG algorithm and overlap non-dependent computations by reorganizing the traditional PCG code and using non-blocking allreduces. We have developed a novel pipelined PCG algorithm called PIPECG-OATI (One Allreduce per Two Iterations) that provides large overlap of global communication and computations at higher number of cores in distributed memory CPU systems. Our method achieves this overlapping by using iteration combination and by introducing new non-recurrence computations. We compare our method with other pipelined CG methods on a variety of problems and demonstrate that our method always gives the least runtimes. Our method gives up to 3x speedup over PCG method and 1.73x speedup over PIPECG method at large number of cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信