二值灰度码的一些性质

K. Nagata, F. Nemenzo
{"title":"二值灰度码的一些性质","authors":"K. Nagata, F. Nemenzo","doi":"10.1109/CCATS.2015.27","DOIUrl":null,"url":null,"abstract":"The binary Gray code, or the reflected binary code, is a code whose code-word changes only one bit and the Hamming distance of two adjacent code-words is always one. Although the binary Gray code itself has many plications and is related to theoretical or practical facts, we are interested in it as a transforming function from a residue numbers modulo a power of 2 to a product of binary number of certain size. In this paper, we especially focus on the weight of n-the code-word, and give some properties of the weight which might help us to lead a map with a required characteristics.","PeriodicalId":433684,"journal":{"name":"2015 International Conference on Computer Application Technologies","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Some Properties of Binary Gray Code\",\"authors\":\"K. Nagata, F. Nemenzo\",\"doi\":\"10.1109/CCATS.2015.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The binary Gray code, or the reflected binary code, is a code whose code-word changes only one bit and the Hamming distance of two adjacent code-words is always one. Although the binary Gray code itself has many plications and is related to theoretical or practical facts, we are interested in it as a transforming function from a residue numbers modulo a power of 2 to a product of binary number of certain size. In this paper, we especially focus on the weight of n-the code-word, and give some properties of the weight which might help us to lead a map with a required characteristics.\",\"PeriodicalId\":433684,\"journal\":{\"name\":\"2015 International Conference on Computer Application Technologies\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Computer Application Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCATS.2015.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Computer Application Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCATS.2015.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

二进制格雷码或反射二进制码是码字只变化一位,相邻两个码字的汉明距离始终为1的一种码。虽然二进制格雷码本身有许多应用,并且与理论或实际事实有关,但我们感兴趣的是它作为一个从剩数模2的幂到一定大小的二进制数的乘积的转换函数。本文重点讨论了码字n的权值,并给出了权值的一些性质,这些性质可能有助于我们绘制具有所需特征的映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Properties of Binary Gray Code
The binary Gray code, or the reflected binary code, is a code whose code-word changes only one bit and the Hamming distance of two adjacent code-words is always one. Although the binary Gray code itself has many plications and is related to theoretical or practical facts, we are interested in it as a transforming function from a residue numbers modulo a power of 2 to a product of binary number of certain size. In this paper, we especially focus on the weight of n-the code-word, and give some properties of the weight which might help us to lead a map with a required characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信