视频信息处理中的极大极小相似准则

R. Bogush, S. Maltsev
{"title":"视频信息处理中的极大极小相似准则","authors":"R. Bogush, S. Maltsev","doi":"10.1109/SIBCON.2007.371310","DOIUrl":null,"url":null,"abstract":"In this paper we propose new family of functions similarity allowing with a high degree of accuracy to process a video information. These functions forms an integral similarity estimate based on sequential minimax analysis image elements. Results of experimental researches for object detection in image and image sequences are presented.","PeriodicalId":131657,"journal":{"name":"2007 Siberian Conference on Control and Communications","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Minimax Criterion of Similarity for Video Information Processing\",\"authors\":\"R. Bogush, S. Maltsev\",\"doi\":\"10.1109/SIBCON.2007.371310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose new family of functions similarity allowing with a high degree of accuracy to process a video information. These functions forms an integral similarity estimate based on sequential minimax analysis image elements. Results of experimental researches for object detection in image and image sequences are presented.\",\"PeriodicalId\":131657,\"journal\":{\"name\":\"2007 Siberian Conference on Control and Communications\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Siberian Conference on Control and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBCON.2007.371310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Siberian Conference on Control and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBCON.2007.371310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们提出了一种新的相似性函数族,可以以较高的精度对视频信息进行处理。这些函数构成了基于序列极大极小分析图像元素的积分相似估计。给出了图像和图像序列中目标检测的实验研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimax Criterion of Similarity for Video Information Processing
In this paper we propose new family of functions similarity allowing with a high degree of accuracy to process a video information. These functions forms an integral similarity estimate based on sequential minimax analysis image elements. Results of experimental researches for object detection in image and image sequences are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信