基于优化自构建聚类神经网络的入侵检测方法研究

Rui Qiao, Bo Chen
{"title":"基于优化自构建聚类神经网络的入侵检测方法研究","authors":"Rui Qiao, Bo Chen","doi":"10.1109/ICIA.2004.1373338","DOIUrl":null,"url":null,"abstract":"This paper puts forward a method of bringing neural network to bear intrusion detection. When the average error can't decrease any longer, the hereditary algorithm will be used to continuatively train the network in the interest of acquiring optimized join parameter. The network structure and network joining parameter will evolve at the same time by the neural network and hereditary algorithm. The convergence effect is good and the adaptivity is strong, suitable for real-time processing.","PeriodicalId":297178,"journal":{"name":"International Conference on Information Acquisition, 2004. Proceedings.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Intrusion detection method research based on optimized self-buildup clustering neural network\",\"authors\":\"Rui Qiao, Bo Chen\",\"doi\":\"10.1109/ICIA.2004.1373338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper puts forward a method of bringing neural network to bear intrusion detection. When the average error can't decrease any longer, the hereditary algorithm will be used to continuatively train the network in the interest of acquiring optimized join parameter. The network structure and network joining parameter will evolve at the same time by the neural network and hereditary algorithm. The convergence effect is good and the adaptivity is strong, suitable for real-time processing.\",\"PeriodicalId\":297178,\"journal\":{\"name\":\"International Conference on Information Acquisition, 2004. Proceedings.\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Acquisition, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIA.2004.1373338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Acquisition, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIA.2004.1373338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种将神经网络应用于入侵检测的方法。当平均误差不能再减小时,采用遗传算法对网络进行连续训练,以获得最优的连接参数。通过神经网络和遗传算法,使网络结构和网络连接参数同时进化。该算法收敛效果好,自适应能力强,适合实时处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrusion detection method research based on optimized self-buildup clustering neural network
This paper puts forward a method of bringing neural network to bear intrusion detection. When the average error can't decrease any longer, the hereditary algorithm will be used to continuatively train the network in the interest of acquiring optimized join parameter. The network structure and network joining parameter will evolve at the same time by the neural network and hereditary algorithm. The convergence effect is good and the adaptivity is strong, suitable for real-time processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信