锂离子通过自旋电容和转换控制磁性

Feng-jun Zhang, Zhaohui Li, Q. Xia, Qinghua Zhang, C. Ge, Yanxue Chen, Xiangkun Li, Leqing Zhang, Kai Wang, Hongsen Li, Shandong Li, Y. Long, L. Gu, Shishen Yan, G. Miao, Qiang Li
{"title":"锂离子通过自旋电容和转换控制磁性","authors":"Feng-jun Zhang, Zhaohui Li, Q. Xia, Qinghua Zhang, C. Ge, Yanxue Chen, Xiangkun Li, Leqing Zhang, Kai Wang, Hongsen Li, Shandong Li, Y. Long, L. Gu, Shishen Yan, G. Miao, Qiang Li","doi":"10.2139/ssrn.3788469","DOIUrl":null,"url":null,"abstract":"Magnetoelectric (ME) coupling has gradually developed into one of the core means of advancing ultralow-power memory, logic and sensor technologies. Among various strategies, magneto-ionic control of magnetism based on mechanism such as redox, intercalation/deintercalation, and charge accumulation can be achieved in ion battery or capacitor systems. In this work, we demonstrate a ME effect originating from the spin capacitance, combining the advantages of intercalation batteries and supercapacitors. A giant, fast and reversible modulation on the saturation magnetization of ferromagnetic Fe is achieved by lithium ions motion across the Fe/Li2O interface at no more than 1 V. Furthermore, the magnetic evolution driven by the conversion reaction between FeO and Fe over a larger voltage range demonstrates ferromagnetic ordering of the FeO surface. These findings not only open new perspectives for developing high-performance magneto-ionic devices, but also are crucial to designing spintronic devices composed of iron and oxide multilayer structures.","PeriodicalId":337638,"journal":{"name":"EngRN: Materials in Energy (Topic)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium-Ionic Control of Magnetism Through Spin Capacitance and Conversion\",\"authors\":\"Feng-jun Zhang, Zhaohui Li, Q. Xia, Qinghua Zhang, C. Ge, Yanxue Chen, Xiangkun Li, Leqing Zhang, Kai Wang, Hongsen Li, Shandong Li, Y. Long, L. Gu, Shishen Yan, G. Miao, Qiang Li\",\"doi\":\"10.2139/ssrn.3788469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetoelectric (ME) coupling has gradually developed into one of the core means of advancing ultralow-power memory, logic and sensor technologies. Among various strategies, magneto-ionic control of magnetism based on mechanism such as redox, intercalation/deintercalation, and charge accumulation can be achieved in ion battery or capacitor systems. In this work, we demonstrate a ME effect originating from the spin capacitance, combining the advantages of intercalation batteries and supercapacitors. A giant, fast and reversible modulation on the saturation magnetization of ferromagnetic Fe is achieved by lithium ions motion across the Fe/Li2O interface at no more than 1 V. Furthermore, the magnetic evolution driven by the conversion reaction between FeO and Fe over a larger voltage range demonstrates ferromagnetic ordering of the FeO surface. These findings not only open new perspectives for developing high-performance magneto-ionic devices, but also are crucial to designing spintronic devices composed of iron and oxide multilayer structures.\",\"PeriodicalId\":337638,\"journal\":{\"name\":\"EngRN: Materials in Energy (Topic)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EngRN: Materials in Energy (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3788469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Materials in Energy (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3788469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

磁电耦合已逐渐发展成为推进超低功耗存储、逻辑和传感器技术的核心手段之一。在各种策略中,基于氧化还原、嵌入/脱嵌和电荷积累等机制的磁离子控制可以在离子电池或电容器系统中实现。在这项工作中,我们展示了一种源自自旋电容的ME效应,结合了插层电池和超级电容器的优点。通过在Fe/Li2O界面上不超过1v的锂离子运动,实现了铁磁性Fe饱和磁化的巨大、快速和可逆调制。此外,FeO和Fe之间的转换反应在较大电压范围内驱动的磁性演化表明FeO表面具有铁磁性有序。这些发现不仅为开发高性能磁离子器件开辟了新的前景,而且对设计由铁和氧化物多层结构组成的自旋电子器件具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lithium-Ionic Control of Magnetism Through Spin Capacitance and Conversion
Magnetoelectric (ME) coupling has gradually developed into one of the core means of advancing ultralow-power memory, logic and sensor technologies. Among various strategies, magneto-ionic control of magnetism based on mechanism such as redox, intercalation/deintercalation, and charge accumulation can be achieved in ion battery or capacitor systems. In this work, we demonstrate a ME effect originating from the spin capacitance, combining the advantages of intercalation batteries and supercapacitors. A giant, fast and reversible modulation on the saturation magnetization of ferromagnetic Fe is achieved by lithium ions motion across the Fe/Li2O interface at no more than 1 V. Furthermore, the magnetic evolution driven by the conversion reaction between FeO and Fe over a larger voltage range demonstrates ferromagnetic ordering of the FeO surface. These findings not only open new perspectives for developing high-performance magneto-ionic devices, but also are crucial to designing spintronic devices composed of iron and oxide multilayer structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信