在4维和5维上对充分连接的PSC流形进行分类

Otis Chodosh, Chao Li, Yevgeny Liokumovich
{"title":"在4维和5维上对充分连接的PSC流形进行分类","authors":"Otis Chodosh, Chao Li, Yevgeny Liokumovich","doi":"10.2140/gt.2023.27.1635","DOIUrl":null,"url":null,"abstract":"We show that if $N$ is a closed manifold of dimension $n=4$ (resp. $n=5$) with $\\pi_2(N) = 0$ (resp. $\\pi_2(N)=\\pi_3(N)=0$) that admits a metric of positive scalar curvature, then a finite cover $\\hat N$ of $N$ is homotopy equivalent to $S^n$ or connected sums of $S^{n-1}\\times S^1$. Our approach combines recent advances in the study of positive scalar curvature with a novel argument of Alpert--Balitskiy--Guth. Additionally, we prove a more general mapping version of this result. In particular, this implies that if $N$ is a closed manifold of dimensions $4$ or $5$, and $N$ admits a map of nonzero degree to a closed aspherical manifold, then $N$ does not admit any Riemannian metric with positive scalar curvature.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Classifying sufficiently connected PSC manifolds\\nin 4 and 5 dimensions\",\"authors\":\"Otis Chodosh, Chao Li, Yevgeny Liokumovich\",\"doi\":\"10.2140/gt.2023.27.1635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that if $N$ is a closed manifold of dimension $n=4$ (resp. $n=5$) with $\\\\pi_2(N) = 0$ (resp. $\\\\pi_2(N)=\\\\pi_3(N)=0$) that admits a metric of positive scalar curvature, then a finite cover $\\\\hat N$ of $N$ is homotopy equivalent to $S^n$ or connected sums of $S^{n-1}\\\\times S^1$. Our approach combines recent advances in the study of positive scalar curvature with a novel argument of Alpert--Balitskiy--Guth. Additionally, we prove a more general mapping version of this result. In particular, this implies that if $N$ is a closed manifold of dimensions $4$ or $5$, and $N$ admits a map of nonzero degree to a closed aspherical manifold, then $N$ does not admit any Riemannian metric with positive scalar curvature.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2023.27.1635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.1635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们证明,如果$N$是一个维数为$n=4$的封闭流形(参见。$n=5$)和$\pi_2(N) = 0$(回复。$\pi_2(N)=\pi_3(N)=0$)允许一个正标量曲率度规,那么$N$的有限覆盖$\hat N$等价于$S^n$或$S^{n-1}\times S^1$的连通和。我们的方法结合了正标量曲率研究的最新进展和Alpert- Balitskiy- Guth的新论点。此外,我们证明了这个结果的一个更一般的映射版本。特别地,这意味着如果$N$是一个维度为$4$或$5$的封闭流形,并且$N$允许一个到封闭非球面流形的非零度映射,那么$N$不允许任何具有正标量曲率的黎曼度规。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions
We show that if $N$ is a closed manifold of dimension $n=4$ (resp. $n=5$) with $\pi_2(N) = 0$ (resp. $\pi_2(N)=\pi_3(N)=0$) that admits a metric of positive scalar curvature, then a finite cover $\hat N$ of $N$ is homotopy equivalent to $S^n$ or connected sums of $S^{n-1}\times S^1$. Our approach combines recent advances in the study of positive scalar curvature with a novel argument of Alpert--Balitskiy--Guth. Additionally, we prove a more general mapping version of this result. In particular, this implies that if $N$ is a closed manifold of dimensions $4$ or $5$, and $N$ admits a map of nonzero degree to a closed aspherical manifold, then $N$ does not admit any Riemannian metric with positive scalar curvature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信