结合多个图像特征来指导自动肖像裁剪以呈现不同的长宽比

Claudio S. V. C. Cavalcanti, H. Gomes, J. E. R. D. Queiroz
{"title":"结合多个图像特征来指导自动肖像裁剪以呈现不同的长宽比","authors":"Claudio S. V. C. Cavalcanti, H. Gomes, J. E. R. D. Queiroz","doi":"10.1109/SITIS.2010.21","DOIUrl":null,"url":null,"abstract":"Nowadays there exists a large variety of aspect ratios used for both image rendering (e.g. print media, TV, cinema screens etc.) and image acquisition devices (e.g. still and video cameras, scanners etc.). In order to maintain the image’s original aspect ratio when adjusting for a different media, some level of cropping may be required, but the automatic zoom and crop method may not produce satisfactory results regarding image contents. This paper proposes an automatic method that analyses images and estimates the relevant content areas, avoiding distortions and main subject chopping. The analysis is performed by four feature extractors, each producing a grayscale image which indicates relevant image areas. The outputs of these extractors are then combined by means of a Genetic Algorithm (GA) optimization. Experiments involving a subjective evaluation of a set of automatically cropped images have shown that 77% of the 35 human observers considered images adjusted by the proposed approach better than or similar to the outputs of the automatic zoom and crop method.","PeriodicalId":128396,"journal":{"name":"2010 Sixth International Conference on Signal-Image Technology and Internet Based Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Combining Multiple Image Features to Guide Automatic Portrait Cropping for Rendering Different Aspect Ratios\",\"authors\":\"Claudio S. V. C. Cavalcanti, H. Gomes, J. E. R. D. Queiroz\",\"doi\":\"10.1109/SITIS.2010.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays there exists a large variety of aspect ratios used for both image rendering (e.g. print media, TV, cinema screens etc.) and image acquisition devices (e.g. still and video cameras, scanners etc.). In order to maintain the image’s original aspect ratio when adjusting for a different media, some level of cropping may be required, but the automatic zoom and crop method may not produce satisfactory results regarding image contents. This paper proposes an automatic method that analyses images and estimates the relevant content areas, avoiding distortions and main subject chopping. The analysis is performed by four feature extractors, each producing a grayscale image which indicates relevant image areas. The outputs of these extractors are then combined by means of a Genetic Algorithm (GA) optimization. Experiments involving a subjective evaluation of a set of automatically cropped images have shown that 77% of the 35 human observers considered images adjusted by the proposed approach better than or similar to the outputs of the automatic zoom and crop method.\",\"PeriodicalId\":128396,\"journal\":{\"name\":\"2010 Sixth International Conference on Signal-Image Technology and Internet Based Systems\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Sixth International Conference on Signal-Image Technology and Internet Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2010.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Sixth International Conference on Signal-Image Technology and Internet Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2010.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

如今,存在各种各样的宽高比用于图像渲染(例如印刷媒体,电视,电影屏幕等)和图像采集设备(例如静止和视频摄像机,扫描仪等)。为了在调整不同媒体时保持图像的原始长宽比,可能需要进行一定程度的裁剪,但是自动缩放和裁剪方法可能无法产生令人满意的图像内容结果。本文提出了一种自动分析图像并估计相关内容区域的方法,避免了图像失真和主体截断。分析由四个特征提取器执行,每个特征提取器产生一个灰度图像,表示相关的图像区域。然后通过遗传算法(GA)优化将这些提取器的输出组合起来。对一组自动裁剪图像进行主观评价的实验表明,35名人类观察者中有77%的人认为,采用该方法调整的图像优于或类似于自动缩放和裁剪方法的输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Multiple Image Features to Guide Automatic Portrait Cropping for Rendering Different Aspect Ratios
Nowadays there exists a large variety of aspect ratios used for both image rendering (e.g. print media, TV, cinema screens etc.) and image acquisition devices (e.g. still and video cameras, scanners etc.). In order to maintain the image’s original aspect ratio when adjusting for a different media, some level of cropping may be required, but the automatic zoom and crop method may not produce satisfactory results regarding image contents. This paper proposes an automatic method that analyses images and estimates the relevant content areas, avoiding distortions and main subject chopping. The analysis is performed by four feature extractors, each producing a grayscale image which indicates relevant image areas. The outputs of these extractors are then combined by means of a Genetic Algorithm (GA) optimization. Experiments involving a subjective evaluation of a set of automatically cropped images have shown that 77% of the 35 human observers considered images adjusted by the proposed approach better than or similar to the outputs of the automatic zoom and crop method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信