基于支持向量机模型的预测控制

J. Wang, Shuyi Sun
{"title":"基于支持向量机模型的预测控制","authors":"J. Wang, Shuyi Sun","doi":"10.1109/WCICA.2006.1712639","DOIUrl":null,"url":null,"abstract":"To the nonlinear controlled objects that generally exist in industrial processes, a predictive control algorithm based on support vector machine (SVM) model was proposed. First, SVM model with RBF kernel function was constructed offline. Then, the future values of controlled variable were predicted and linearized online using the SVM model. Finally, generalized predictive control (GPC) was applied to realize control goal. The simulation proves that this method is effective","PeriodicalId":375135,"journal":{"name":"2006 6th World Congress on Intelligent Control and Automation","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predictive Control Based on Support Vector Machine Model\",\"authors\":\"J. Wang, Shuyi Sun\",\"doi\":\"10.1109/WCICA.2006.1712639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To the nonlinear controlled objects that generally exist in industrial processes, a predictive control algorithm based on support vector machine (SVM) model was proposed. First, SVM model with RBF kernel function was constructed offline. Then, the future values of controlled variable were predicted and linearized online using the SVM model. Finally, generalized predictive control (GPC) was applied to realize control goal. The simulation proves that this method is effective\",\"PeriodicalId\":375135,\"journal\":{\"name\":\"2006 6th World Congress on Intelligent Control and Automation\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 6th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2006.1712639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 6th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2006.1712639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对工业过程中普遍存在的非线性被控对象,提出了一种基于支持向量机模型的预测控制算法。首先,离线构建具有RBF核函数的SVM模型;然后,利用支持向量机模型对控制变量的未来值进行在线预测和线性化。最后,应用广义预测控制(GPC)实现控制目标。仿真结果证明了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Control Based on Support Vector Machine Model
To the nonlinear controlled objects that generally exist in industrial processes, a predictive control algorithm based on support vector machine (SVM) model was proposed. First, SVM model with RBF kernel function was constructed offline. Then, the future values of controlled variable were predicted and linearized online using the SVM model. Finally, generalized predictive control (GPC) was applied to realize control goal. The simulation proves that this method is effective
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信