法格-方丹曲线的简单连通性

K. Kedlaya
{"title":"法格-方丹曲线的简单连通性","authors":"K. Kedlaya","doi":"10.5802/ahl.101","DOIUrl":null,"url":null,"abstract":"We show that the Fargues--Fontaine curve associated to an algebraically closed field of characteristic p is geometrically simply connected; that is, its base extension from Q_p to any complete algebraically closed overfield admits no nontrivial connected finite etale covering. We then deduce from this an analogue for perfectoid spaces (and some related objects) of Drinfeld's lemma on the fundamental group of a product of schemes in characteristic p.","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Simple connectivity of Fargues–Fontaine curves\",\"authors\":\"K. Kedlaya\",\"doi\":\"10.5802/ahl.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the Fargues--Fontaine curve associated to an algebraically closed field of characteristic p is geometrically simply connected; that is, its base extension from Q_p to any complete algebraically closed overfield admits no nontrivial connected finite etale covering. We then deduce from this an analogue for perfectoid spaces (and some related objects) of Drinfeld's lemma on the fundamental group of a product of schemes in characteristic p.\",\"PeriodicalId\":192307,\"journal\":{\"name\":\"Annales Henri Lebesgue\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Lebesgue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ahl.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

证明了特征为p的代数闭域的法格-方丹曲线是几何单连通的;即,它的基由Q_p扩展到任何完全代数闭上域,不允许有非平凡连通有限矩阵覆盖。然后,我们由此推导出特征p上的一种积的基本群上的完全似然空间(和一些相关对象)的德林菲尔德引理的类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple connectivity of Fargues–Fontaine curves
We show that the Fargues--Fontaine curve associated to an algebraically closed field of characteristic p is geometrically simply connected; that is, its base extension from Q_p to any complete algebraically closed overfield admits no nontrivial connected finite etale covering. We then deduce from this an analogue for perfectoid spaces (and some related objects) of Drinfeld's lemma on the fundamental group of a product of schemes in characteristic p.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信