平面变压器抑制全桥整流器LLC变换器共模EMI噪声的屏蔽技术

Feng Jin, Ahmed Nabih, Qiang Li
{"title":"平面变压器抑制全桥整流器LLC变换器共模EMI噪声的屏蔽技术","authors":"Feng Jin, Ahmed Nabih, Qiang Li","doi":"10.1109/APEC43580.2023.10131601","DOIUrl":null,"url":null,"abstract":"The planar transformer shows excellent benefits when applied in a high efficiency and high power density LLC converter with increased common-mode (CM) noise caused by the large interwinding capacitances. For the shielding design of a half-bridge (HB) LLC converter with a full-bridge rectifier(FBR), it is essential to find the static-electric-potential (SEP) point in the physical primary or secondary windings. With the proper design of the ground connection of shielding winding, the voltage potential difference between shielding winding and primary/secondary windings is minimized, and the net displacement CM current diminishes. In this paper, the analysis of the SEP point of different transformers for the HBLLC converter with a FBR was discussed, and the net CM current under different ground connection strategies of shielding winding was compared. The CM noises of different strategies are measured based on a 1.5kW HBLLC converter with FBR hardware platform. The EMI measurement results show that it can attenuate the CM noise by 20 dB or more with proper shielding design.","PeriodicalId":151216,"journal":{"name":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shielding Technique of Planar Transformers to Suppress Common-Mode EMI Noise for LLC Converter with Full Bridge Rectifier\",\"authors\":\"Feng Jin, Ahmed Nabih, Qiang Li\",\"doi\":\"10.1109/APEC43580.2023.10131601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The planar transformer shows excellent benefits when applied in a high efficiency and high power density LLC converter with increased common-mode (CM) noise caused by the large interwinding capacitances. For the shielding design of a half-bridge (HB) LLC converter with a full-bridge rectifier(FBR), it is essential to find the static-electric-potential (SEP) point in the physical primary or secondary windings. With the proper design of the ground connection of shielding winding, the voltage potential difference between shielding winding and primary/secondary windings is minimized, and the net displacement CM current diminishes. In this paper, the analysis of the SEP point of different transformers for the HBLLC converter with a FBR was discussed, and the net CM current under different ground connection strategies of shielding winding was compared. The CM noises of different strategies are measured based on a 1.5kW HBLLC converter with FBR hardware platform. The EMI measurement results show that it can attenuate the CM noise by 20 dB or more with proper shielding design.\",\"PeriodicalId\":151216,\"journal\":{\"name\":\"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC43580.2023.10131601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC43580.2023.10131601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当平面变压器应用于高效率、高功率密度的LLC变换器时显示出优异的性能,但由于大的交圈电容导致共模噪声增加。对于带全桥整流器(FBR)的半桥(HB) LLC变换器的屏蔽设计,必须确定其物理一次或二次绕组的静电电位(SEP)点。通过合理设计屏蔽绕组的接地,可以减小屏蔽绕组与一次/二次绕组之间的电压电位差,减小净位移CM电流。分析了带快堆的HBLLC变换器中不同变压器的SEP点,比较了屏蔽绕组不同接地策略下的净CM电流。基于FBR硬件平台的1.5kW HBLLC变换器,测量了不同策略的CM噪声。电磁干扰测量结果表明,适当的屏蔽设计可使CM噪声衰减20 dB以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shielding Technique of Planar Transformers to Suppress Common-Mode EMI Noise for LLC Converter with Full Bridge Rectifier
The planar transformer shows excellent benefits when applied in a high efficiency and high power density LLC converter with increased common-mode (CM) noise caused by the large interwinding capacitances. For the shielding design of a half-bridge (HB) LLC converter with a full-bridge rectifier(FBR), it is essential to find the static-electric-potential (SEP) point in the physical primary or secondary windings. With the proper design of the ground connection of shielding winding, the voltage potential difference between shielding winding and primary/secondary windings is minimized, and the net displacement CM current diminishes. In this paper, the analysis of the SEP point of different transformers for the HBLLC converter with a FBR was discussed, and the net CM current under different ground connection strategies of shielding winding was compared. The CM noises of different strategies are measured based on a 1.5kW HBLLC converter with FBR hardware platform. The EMI measurement results show that it can attenuate the CM noise by 20 dB or more with proper shielding design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信