不规则域的热核平滑

M. Chung, Yanli Wang
{"title":"不规则域的热核平滑","authors":"M. Chung, Yanli Wang","doi":"10.1142/9789811200137_0008","DOIUrl":null,"url":null,"abstract":"We review the heat kernel smoothing techniques for denoising and regressing data in irregularly shaped domains embedded in Euclidean spaces. This is a problem often encountered in functional data analysis and medical imaging. In this chapter, we present a unified mathematical framework based on the eigenfunctions of the Laplace-Beltrami operators defined on irregular domains. Numerical implementation issues will be addressed as well. Various examples will be presented. We also present a few new theoretical results on the properties of heat kernel smoothing.","PeriodicalId":367095,"journal":{"name":"Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Heat Kernel Smoothing in Irregular Domains\",\"authors\":\"M. Chung, Yanli Wang\",\"doi\":\"10.1142/9789811200137_0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review the heat kernel smoothing techniques for denoising and regressing data in irregularly shaped domains embedded in Euclidean spaces. This is a problem often encountered in functional data analysis and medical imaging. In this chapter, we present a unified mathematical framework based on the eigenfunctions of the Laplace-Beltrami operators defined on irregular domains. Numerical implementation issues will be addressed as well. Various examples will be presented. We also present a few new theoretical results on the properties of heat kernel smoothing.\",\"PeriodicalId\":367095,\"journal\":{\"name\":\"Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811200137_0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811200137_0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们回顾了在欧几里得空间中嵌入的不规则形状域的数据去噪和回归的热核平滑技术。这是在功能数据分析和医学成像中经常遇到的问题。在本章中,我们提出了一个基于不规则域上拉普拉斯-贝尔特拉米算子特征函数的统一数学框架。数字执行问题也将得到解决。将介绍各种例子。我们还提出了一些关于热核平滑性质的新的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat Kernel Smoothing in Irregular Domains
We review the heat kernel smoothing techniques for denoising and regressing data in irregularly shaped domains embedded in Euclidean spaces. This is a problem often encountered in functional data analysis and medical imaging. In this chapter, we present a unified mathematical framework based on the eigenfunctions of the Laplace-Beltrami operators defined on irregular domains. Numerical implementation issues will be addressed as well. Various examples will be presented. We also present a few new theoretical results on the properties of heat kernel smoothing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信