{"title":"研究圆型偏转攻击的特点","authors":"V. Slabunov, Aleksandra Slabunova, A. Kupriyanov","doi":"10.32962/0235-2524-2020-4-29-34","DOIUrl":null,"url":null,"abstract":"The aim of the research is to analyze the characteristics of experimental circular-type deflector nozzles installed as rain-forming devices on a new wide-grip circular sprinkler machine developed at the Federal State Budget Scientific Institution «RosNIIPM» obtained during laboratory field trials. In this case, circular-type baffle nozzles with nozzle diameters, mm, were used: 2, 4, 6, 8, 10, 12, 14. The maximum irrigation radius of a circulartype baffle nozzle (for various nozzle diameters) at a maximum pressure equal to 0.3 MPa lies in the range of 2.6–11.5 m. Processing of the experimental data made it possible to obtain the dependences of the irrigation radius of circular-type deflector nozzles on the head and nozzle diameter and average droplet diameter on nozzle and head flow rate, which will allow the selection of the necessary circular-type deflector nozzles at the installation height of 2.7 m Thus, the developed nozzles provide a uniform distribution of irrigation water over the irrigation area, and the average diameter of rain drops can be attributed to the fine-structured one, which ensures the fulfillment of agrotechnical requirements.","PeriodicalId":136110,"journal":{"name":"Melioration and Water Management","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research characteristics of deflector attacks of circle type\",\"authors\":\"V. Slabunov, Aleksandra Slabunova, A. Kupriyanov\",\"doi\":\"10.32962/0235-2524-2020-4-29-34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the research is to analyze the characteristics of experimental circular-type deflector nozzles installed as rain-forming devices on a new wide-grip circular sprinkler machine developed at the Federal State Budget Scientific Institution «RosNIIPM» obtained during laboratory field trials. In this case, circular-type baffle nozzles with nozzle diameters, mm, were used: 2, 4, 6, 8, 10, 12, 14. The maximum irrigation radius of a circulartype baffle nozzle (for various nozzle diameters) at a maximum pressure equal to 0.3 MPa lies in the range of 2.6–11.5 m. Processing of the experimental data made it possible to obtain the dependences of the irrigation radius of circular-type deflector nozzles on the head and nozzle diameter and average droplet diameter on nozzle and head flow rate, which will allow the selection of the necessary circular-type deflector nozzles at the installation height of 2.7 m Thus, the developed nozzles provide a uniform distribution of irrigation water over the irrigation area, and the average diameter of rain drops can be attributed to the fine-structured one, which ensures the fulfillment of agrotechnical requirements.\",\"PeriodicalId\":136110,\"journal\":{\"name\":\"Melioration and Water Management\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Melioration and Water Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32962/0235-2524-2020-4-29-34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Melioration and Water Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32962/0235-2524-2020-4-29-34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research characteristics of deflector attacks of circle type
The aim of the research is to analyze the characteristics of experimental circular-type deflector nozzles installed as rain-forming devices on a new wide-grip circular sprinkler machine developed at the Federal State Budget Scientific Institution «RosNIIPM» obtained during laboratory field trials. In this case, circular-type baffle nozzles with nozzle diameters, mm, were used: 2, 4, 6, 8, 10, 12, 14. The maximum irrigation radius of a circulartype baffle nozzle (for various nozzle diameters) at a maximum pressure equal to 0.3 MPa lies in the range of 2.6–11.5 m. Processing of the experimental data made it possible to obtain the dependences of the irrigation radius of circular-type deflector nozzles on the head and nozzle diameter and average droplet diameter on nozzle and head flow rate, which will allow the selection of the necessary circular-type deflector nozzles at the installation height of 2.7 m Thus, the developed nozzles provide a uniform distribution of irrigation water over the irrigation area, and the average diameter of rain drops can be attributed to the fine-structured one, which ensures the fulfillment of agrotechnical requirements.