一种测量全身暴露的狄利克雷镶嵌抽样方案。

J. Wheeler, N. Warren
{"title":"一种测量全身暴露的狄利克雷镶嵌抽样方案。","authors":"J. Wheeler, N. Warren","doi":"10.1093/ANNHYG/MEF026","DOIUrl":null,"url":null,"abstract":"Dermal sampling can be conducted using small pads or patches attached to various areas of the skin or clothing, or by using a whole-body coverall. Both techniques are recognized standardized methods for collecting chemicals. Patch sampling is simple to perform and inexpensive to analyse compared with an entire overall, but may require some user intervention. Extrapolation from a small sampled area to the total body area can lead to inaccurate estimates of total body exposure because of a lack of uniformity of deposition. Whole-body overall analysis eliminates the problems associated with using patches and gives a more accurate estimate of total body exposure. Therefore, if it were possible to measure the whole-body overall accurately and quickly, we would have a better assessment of dermal exposure. In this study we develop a working protocol using a standardized approach, to measure the contamination over an entire overall. The protocol takes into account size differences and establishes a reproducible pattern of sampling in order to map the distribution of contamination over each overall. The working protocol has been applied to 10 overalls collected from companies using copper-based biocides. A portable X-ray fluorescence spectrometer (PXRF) was used to measure the copper in the biocide. The exposure estimate from the PXRF results uses an averaging scheme based on the Dirichlet tessellation of the sampling locations. This allows unbiased estimates to be obtained from a complex sampling scheme that allocates more measurements to areas of high exposure. The Dirichlet tessellation method has been compared to the patch sampling method and the conventional total digestion of the entire overall method. Using the whole-suit digestion method as the benchmark, exposures ranged from 92.0 to 5848.5 mg. Mean absolute percentage errors (from the benchmark acid digestion of the whole suit) varied from approximately 20% for the Dirichlet-based PXRF method to 60% for the patch methods. The patch methods underestimated the true dermal exposure (-28 to -82% for acid digestion of the patches). Analysis of this data indicates that the Dirichlet PXRF method gives a more accurate estimate of whole-body contamination than the patch method. Furthermore, the 104 measurements give a much greater spatial resolution to the exposure data than analysis of the whole overall or patches by inductively coupled plasma-atomic emission mass spectrometry (ICP-AES). This detailed knowledge of the pattern of deposition on the body is of potential importance in chemical risk assessments.","PeriodicalId":342592,"journal":{"name":"The Annals of occupational hygiene","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Dirichlet Tessellation-based sampling scheme for measuring whole-body exposure.\",\"authors\":\"J. Wheeler, N. Warren\",\"doi\":\"10.1093/ANNHYG/MEF026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dermal sampling can be conducted using small pads or patches attached to various areas of the skin or clothing, or by using a whole-body coverall. Both techniques are recognized standardized methods for collecting chemicals. Patch sampling is simple to perform and inexpensive to analyse compared with an entire overall, but may require some user intervention. Extrapolation from a small sampled area to the total body area can lead to inaccurate estimates of total body exposure because of a lack of uniformity of deposition. Whole-body overall analysis eliminates the problems associated with using patches and gives a more accurate estimate of total body exposure. Therefore, if it were possible to measure the whole-body overall accurately and quickly, we would have a better assessment of dermal exposure. In this study we develop a working protocol using a standardized approach, to measure the contamination over an entire overall. The protocol takes into account size differences and establishes a reproducible pattern of sampling in order to map the distribution of contamination over each overall. The working protocol has been applied to 10 overalls collected from companies using copper-based biocides. A portable X-ray fluorescence spectrometer (PXRF) was used to measure the copper in the biocide. The exposure estimate from the PXRF results uses an averaging scheme based on the Dirichlet tessellation of the sampling locations. This allows unbiased estimates to be obtained from a complex sampling scheme that allocates more measurements to areas of high exposure. The Dirichlet tessellation method has been compared to the patch sampling method and the conventional total digestion of the entire overall method. Using the whole-suit digestion method as the benchmark, exposures ranged from 92.0 to 5848.5 mg. Mean absolute percentage errors (from the benchmark acid digestion of the whole suit) varied from approximately 20% for the Dirichlet-based PXRF method to 60% for the patch methods. The patch methods underestimated the true dermal exposure (-28 to -82% for acid digestion of the patches). Analysis of this data indicates that the Dirichlet PXRF method gives a more accurate estimate of whole-body contamination than the patch method. Furthermore, the 104 measurements give a much greater spatial resolution to the exposure data than analysis of the whole overall or patches by inductively coupled plasma-atomic emission mass spectrometry (ICP-AES). This detailed knowledge of the pattern of deposition on the body is of potential importance in chemical risk assessments.\",\"PeriodicalId\":342592,\"journal\":{\"name\":\"The Annals of occupational hygiene\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of occupational hygiene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ANNHYG/MEF026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of occupational hygiene","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ANNHYG/MEF026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

皮肤取样可以使用附着在皮肤或衣服不同区域的小垫或贴片,或使用全身工作服进行。这两种技术都是公认的收集化学品的标准化方法。与整体取样相比,斑块取样操作简单,分析成本低,但可能需要一些用户干预。从一个小样本区域外推到整个身体区域,由于缺乏沉积的均匀性,可能导致对整个身体暴露的不准确估计。全身综合分析消除了与使用贴片相关的问题,并给出了更准确的全身暴露估计。因此,如果有可能准确而快速地测量全身,我们就能更好地评估皮肤暴露。在这项研究中,我们开发了一个使用标准化方法的工作协议,以测量整个整体的污染。该方案考虑到大小差异,并建立了可重复的采样模式,以便绘制污染在每个整体上的分布。该工作协议已应用于从使用铜基杀菌剂的公司收集的10件工作服。采用便携式x射线荧光光谱仪(PXRF)测定杀菌剂中铜的含量。PXRF结果的暴露估计使用基于采样位置的狄利克雷镶嵌的平均方案。这允许从一个复杂的抽样方案中获得无偏估计,该方案将更多的测量分配到高暴露区域。将狄利克雷镶嵌法与贴片采样法和传统的全消化法进行了比较。以全服消解法为基准,暴露量为92.0 ~ 5848.5 mg。平均绝对百分比误差(来自整个西装的基准酸消化)从Dirichlet-based PXRF方法的约20%到贴片方法的60%不等。贴片方法低估了真正的皮肤暴露(贴片的酸消化- 28%至-82%)。对这些数据的分析表明,Dirichlet PXRF方法比贴片法提供了更准确的全身污染估计。此外,与电感耦合等离子体-原子发射质谱(ICP-AES)分析整个或局部暴露数据相比,104次测量结果提供了更高的空间分辨率。这种对人体沉积模式的详细了解在化学品风险评估中具有潜在的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dirichlet Tessellation-based sampling scheme for measuring whole-body exposure.
Dermal sampling can be conducted using small pads or patches attached to various areas of the skin or clothing, or by using a whole-body coverall. Both techniques are recognized standardized methods for collecting chemicals. Patch sampling is simple to perform and inexpensive to analyse compared with an entire overall, but may require some user intervention. Extrapolation from a small sampled area to the total body area can lead to inaccurate estimates of total body exposure because of a lack of uniformity of deposition. Whole-body overall analysis eliminates the problems associated with using patches and gives a more accurate estimate of total body exposure. Therefore, if it were possible to measure the whole-body overall accurately and quickly, we would have a better assessment of dermal exposure. In this study we develop a working protocol using a standardized approach, to measure the contamination over an entire overall. The protocol takes into account size differences and establishes a reproducible pattern of sampling in order to map the distribution of contamination over each overall. The working protocol has been applied to 10 overalls collected from companies using copper-based biocides. A portable X-ray fluorescence spectrometer (PXRF) was used to measure the copper in the biocide. The exposure estimate from the PXRF results uses an averaging scheme based on the Dirichlet tessellation of the sampling locations. This allows unbiased estimates to be obtained from a complex sampling scheme that allocates more measurements to areas of high exposure. The Dirichlet tessellation method has been compared to the patch sampling method and the conventional total digestion of the entire overall method. Using the whole-suit digestion method as the benchmark, exposures ranged from 92.0 to 5848.5 mg. Mean absolute percentage errors (from the benchmark acid digestion of the whole suit) varied from approximately 20% for the Dirichlet-based PXRF method to 60% for the patch methods. The patch methods underestimated the true dermal exposure (-28 to -82% for acid digestion of the patches). Analysis of this data indicates that the Dirichlet PXRF method gives a more accurate estimate of whole-body contamination than the patch method. Furthermore, the 104 measurements give a much greater spatial resolution to the exposure data than analysis of the whole overall or patches by inductively coupled plasma-atomic emission mass spectrometry (ICP-AES). This detailed knowledge of the pattern of deposition on the body is of potential importance in chemical risk assessments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信