基于方面的情感分析使用BERT, LSTM和CNN的市场产品评论

Syaiful Imron, Esther Irawati Setiawan, Joan Santoso, Mauridhi Hery Purnomo
{"title":"基于方面的情感分析使用BERT, LSTM和CNN的市场产品评论","authors":"Syaiful Imron, Esther Irawati Setiawan, Joan Santoso, Mauridhi Hery Purnomo","doi":"10.29207/resti.v7i3.4751","DOIUrl":null,"url":null,"abstract":"Bukalapak is one of the largest marketplaces in Indonesia. Reviews on Bukalapak are only in the form of text, images, videos, and stars without any special filters. Reading and analyzing manually makes it difficult for potential buyers. To help with this, we can extract this review by using aspect-based sentiment analysis because an entity cannot be represented by just one sentiment. Several previous research stated that using LSTM-CNN got better results than using LSTM or CNN. In addition, using BERT as word embedding gets better results than using word2vec or glove. For this reason, this study aims to classify aspect-based sentiment analysis from the Bukalapak marketplace with BERT as word embedding and using the LSTM-CNN method, where LSTM is for aspect extraction and CNN for sentiment extraction. Based on testing the LSTM-CNN method, it gets better results than LSTM or CNN. The LSTM-CNN model gets an accuracy of 93.91%. Unbalanced dataset distribution can affect model performance. With the increasing number of datasets used, the accuracy of a model will increase. Classification without using stemming on datasets can increase accuracy by 2.04%. \n ","PeriodicalId":435683,"journal":{"name":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aspect Based Sentiment Analysis Marketplace Product Reviews Using BERT, LSTM, and CNN\",\"authors\":\"Syaiful Imron, Esther Irawati Setiawan, Joan Santoso, Mauridhi Hery Purnomo\",\"doi\":\"10.29207/resti.v7i3.4751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bukalapak is one of the largest marketplaces in Indonesia. Reviews on Bukalapak are only in the form of text, images, videos, and stars without any special filters. Reading and analyzing manually makes it difficult for potential buyers. To help with this, we can extract this review by using aspect-based sentiment analysis because an entity cannot be represented by just one sentiment. Several previous research stated that using LSTM-CNN got better results than using LSTM or CNN. In addition, using BERT as word embedding gets better results than using word2vec or glove. For this reason, this study aims to classify aspect-based sentiment analysis from the Bukalapak marketplace with BERT as word embedding and using the LSTM-CNN method, where LSTM is for aspect extraction and CNN for sentiment extraction. Based on testing the LSTM-CNN method, it gets better results than LSTM or CNN. The LSTM-CNN model gets an accuracy of 93.91%. Unbalanced dataset distribution can affect model performance. With the increasing number of datasets used, the accuracy of a model will increase. Classification without using stemming on datasets can increase accuracy by 2.04%. \\n \",\"PeriodicalId\":435683,\"journal\":{\"name\":\"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29207/resti.v7i3.4751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29207/resti.v7i3.4751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Bukalapak是印尼最大的市场之一。对Bukalapak的评论只有文字、图片、视频和明星的形式,没有任何特殊的过滤器。手动阅读和分析给潜在买家带来了困难。为了帮助解决这个问题,我们可以使用基于方面的情感分析来提取这个评论,因为一个实体不能只用一个情感来表示。之前的几项研究表明,使用LSTM-CNN比使用LSTM或CNN得到更好的结果。此外,使用BERT作为词嵌入比使用word2vec或glove得到更好的结果。因此,本研究旨在对Bukalapak市场中基于方面的情感分析进行分类,使用BERT作为词嵌入,并使用LSTM-CNN方法,其中LSTM用于方面提取,CNN用于情感提取。通过对LSTM-CNN方法的测试,得到了比LSTM和CNN更好的结果。LSTM-CNN模型的准确率为93.91%。不平衡的数据集分布会影响模型的性能。随着使用的数据集数量的增加,模型的准确性也会提高。在数据集上不使用词干提取的分类可以提高2.04%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aspect Based Sentiment Analysis Marketplace Product Reviews Using BERT, LSTM, and CNN
Bukalapak is one of the largest marketplaces in Indonesia. Reviews on Bukalapak are only in the form of text, images, videos, and stars without any special filters. Reading and analyzing manually makes it difficult for potential buyers. To help with this, we can extract this review by using aspect-based sentiment analysis because an entity cannot be represented by just one sentiment. Several previous research stated that using LSTM-CNN got better results than using LSTM or CNN. In addition, using BERT as word embedding gets better results than using word2vec or glove. For this reason, this study aims to classify aspect-based sentiment analysis from the Bukalapak marketplace with BERT as word embedding and using the LSTM-CNN method, where LSTM is for aspect extraction and CNN for sentiment extraction. Based on testing the LSTM-CNN method, it gets better results than LSTM or CNN. The LSTM-CNN model gets an accuracy of 93.91%. Unbalanced dataset distribution can affect model performance. With the increasing number of datasets used, the accuracy of a model will increase. Classification without using stemming on datasets can increase accuracy by 2.04%.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信