{"title":"基于凸优化的多步传感器调度","authors":"Marco F. Huber","doi":"10.1109/CIP.2010.5604100","DOIUrl":null,"url":null,"abstract":"Effective sensor scheduling requires the consideration of long-term effects and thus optimization over long time horizons. Determining the optimal sensor schedule, however, is equivalent to solving a binary integer program, which is computationally demanding for long time horizons and many sensors. For linear Gaussian systems, two efficient multi-step sensor scheduling approaches are proposed in this paper. The first approach determines approximate but close to optimal sensor schedules via convex optimization. The second approach combines convex optimization with a branch-and-bound search for efficiently determining the optimal sensor schedule.","PeriodicalId":171474,"journal":{"name":"2010 2nd International Workshop on Cognitive Information Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On multi-step sensor scheduling via convex optimization\",\"authors\":\"Marco F. Huber\",\"doi\":\"10.1109/CIP.2010.5604100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective sensor scheduling requires the consideration of long-term effects and thus optimization over long time horizons. Determining the optimal sensor schedule, however, is equivalent to solving a binary integer program, which is computationally demanding for long time horizons and many sensors. For linear Gaussian systems, two efficient multi-step sensor scheduling approaches are proposed in this paper. The first approach determines approximate but close to optimal sensor schedules via convex optimization. The second approach combines convex optimization with a branch-and-bound search for efficiently determining the optimal sensor schedule.\",\"PeriodicalId\":171474,\"journal\":{\"name\":\"2010 2nd International Workshop on Cognitive Information Processing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Cognitive Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIP.2010.5604100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Cognitive Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIP.2010.5604100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On multi-step sensor scheduling via convex optimization
Effective sensor scheduling requires the consideration of long-term effects and thus optimization over long time horizons. Determining the optimal sensor schedule, however, is equivalent to solving a binary integer program, which is computationally demanding for long time horizons and many sensors. For linear Gaussian systems, two efficient multi-step sensor scheduling approaches are proposed in this paper. The first approach determines approximate but close to optimal sensor schedules via convex optimization. The second approach combines convex optimization with a branch-and-bound search for efficiently determining the optimal sensor schedule.