分数布朗运动驱动的平均场控制系统的最大原理

Yifang Sun
{"title":"分数布朗运动驱动的平均场控制系统的最大原理","authors":"Yifang Sun","doi":"10.1002/oca.3039","DOIUrl":null,"url":null,"abstract":"We study a stochastic control problem of mean‐field controlled stochastic differential systems driven by a fractional Brownian motion with Hurst parameter H∈(1/2,1)$$ H\\in \\left(1/2,1\\right) $$ . As a necessary condition of the optimal control we obtain a stochastic maximum principle. The associated adjoint mean‐field backward stochastic differential equation driven by a fractional Brownian motion and a classical Brownian motion. Applying the stochastic maximum principle to a mean‐field stochastic linear quadratic problem, we obtain the optimal control and prove that the necessary condition for the optimality of an admissible control is also sufficient under certain assumptions.","PeriodicalId":105945,"journal":{"name":"Optimal Control Applications and Methods","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum principle for mean‐field controlled systems driven by a fractional Brownian motion\",\"authors\":\"Yifang Sun\",\"doi\":\"10.1002/oca.3039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a stochastic control problem of mean‐field controlled stochastic differential systems driven by a fractional Brownian motion with Hurst parameter H∈(1/2,1)$$ H\\\\in \\\\left(1/2,1\\\\right) $$ . As a necessary condition of the optimal control we obtain a stochastic maximum principle. The associated adjoint mean‐field backward stochastic differential equation driven by a fractional Brownian motion and a classical Brownian motion. Applying the stochastic maximum principle to a mean‐field stochastic linear quadratic problem, we obtain the optimal control and prove that the necessary condition for the optimality of an admissible control is also sufficient under certain assumptions.\",\"PeriodicalId\":105945,\"journal\":{\"name\":\"Optimal Control Applications and Methods\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/oca.3039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Maximum principle for mean‐field controlled systems driven by a fractional Brownian motion

Maximum principle for mean‐field controlled systems driven by a fractional Brownian motion
We study a stochastic control problem of mean‐field controlled stochastic differential systems driven by a fractional Brownian motion with Hurst parameter H∈(1/2,1)$$ H\in \left(1/2,1\right) $$ . As a necessary condition of the optimal control we obtain a stochastic maximum principle. The associated adjoint mean‐field backward stochastic differential equation driven by a fractional Brownian motion and a classical Brownian motion. Applying the stochastic maximum principle to a mean‐field stochastic linear quadratic problem, we obtain the optimal control and prove that the necessary condition for the optimality of an admissible control is also sufficient under certain assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信