源编码置换中Kraft不等式的推广

Kristo Visk, Ago-Erik Riet
{"title":"源编码置换中Kraft不等式的推广","authors":"Kristo Visk, Ago-Erik Riet","doi":"10.1109/ISIT.2016.7541496","DOIUrl":null,"url":null,"abstract":"We develop a general framework to prove Kraft-type inequalities for prefix-free permutation codes for source coding with various notions of permutation code and prefix. We also show that the McMillan-type converse theorem in most of these cases fails, and give a general form of a counterexample. Our approach is more general and works for other structures besides permutation codes. The classical Kraft inequality for prefix-free codes and results about permutation codes follow as corollaries of our main theorem and main counterexample.","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalisation of Kraft inequality for source coding into permutations\",\"authors\":\"Kristo Visk, Ago-Erik Riet\",\"doi\":\"10.1109/ISIT.2016.7541496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a general framework to prove Kraft-type inequalities for prefix-free permutation codes for source coding with various notions of permutation code and prefix. We also show that the McMillan-type converse theorem in most of these cases fails, and give a general form of a counterexample. Our approach is more general and works for other structures besides permutation codes. The classical Kraft inequality for prefix-free codes and results about permutation codes follow as corollaries of our main theorem and main counterexample.\",\"PeriodicalId\":198767,\"journal\":{\"name\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一个通用框架来证明具有各种排列码和前缀概念的源编码的无前缀排列码的kraft型不等式。我们还证明了mcmillan型逆定理在大多数情况下是不成立的,并给出了反例的一般形式。我们的方法更通用,适用于除排列代码以外的其他结构。关于无前缀码的经典Kraft不等式和关于置换码的结果作为我们的主要定理和主要反例的推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalisation of Kraft inequality for source coding into permutations
We develop a general framework to prove Kraft-type inequalities for prefix-free permutation codes for source coding with various notions of permutation code and prefix. We also show that the McMillan-type converse theorem in most of these cases fails, and give a general form of a counterexample. Our approach is more general and works for other structures besides permutation codes. The classical Kraft inequality for prefix-free codes and results about permutation codes follow as corollaries of our main theorem and main counterexample.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信