用qm编码器快速实现两级压缩方法

K. Nguyen-Phi, H. Weinrichter
{"title":"用qm编码器快速实现两级压缩方法","authors":"K. Nguyen-Phi, H. Weinrichter","doi":"10.1109/DCC.1997.582123","DOIUrl":null,"url":null,"abstract":"We deal with bi-level image compression. Modern methods consider the bi-level image as a high order Markovian source, and by exploiting this characteristic, can attain better performance. At a first glance, the increasing of the order of the Markovian model in the modelling process should yield a higher compression ratio, but in fact, it is not true. A higher order model needs a longer time to learn (adaptively) the statistical characteristic of the source. If the source sequence, or the bi-level image in this case, is not long enough, then we do not have a stable model. One simple way to solve this problem is the two-level method. We consider the implementation aspects of this method. Instead of using the general arithmetic coder, an obvious alternative is using the QM-coder, thus reducing the memory used and increasing the execution speed. We discuss some possible heuristics to increase the performance. Experimental results obtained with the ITU-T test images are given.","PeriodicalId":403990,"journal":{"name":"Proceedings DCC '97. Data Compression Conference","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast implementation of two-level compression method using QM-coder\",\"authors\":\"K. Nguyen-Phi, H. Weinrichter\",\"doi\":\"10.1109/DCC.1997.582123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We deal with bi-level image compression. Modern methods consider the bi-level image as a high order Markovian source, and by exploiting this characteristic, can attain better performance. At a first glance, the increasing of the order of the Markovian model in the modelling process should yield a higher compression ratio, but in fact, it is not true. A higher order model needs a longer time to learn (adaptively) the statistical characteristic of the source. If the source sequence, or the bi-level image in this case, is not long enough, then we do not have a stable model. One simple way to solve this problem is the two-level method. We consider the implementation aspects of this method. Instead of using the general arithmetic coder, an obvious alternative is using the QM-coder, thus reducing the memory used and increasing the execution speed. We discuss some possible heuristics to increase the performance. Experimental results obtained with the ITU-T test images are given.\",\"PeriodicalId\":403990,\"journal\":{\"name\":\"Proceedings DCC '97. Data Compression Conference\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC '97. Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1997.582123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '97. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1997.582123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们处理双级图像压缩。现代方法将双层图像视为高阶马尔可夫源,利用这一特性可以获得更好的性能。乍一看,马尔可夫模型在建模过程中阶数的增加应该会产生更高的压缩比,但实际上并非如此。高阶模型需要更长的时间来(自适应地)学习源的统计特征。如果源序列,或者在这种情况下的双层图像不够长,那么我们就没有一个稳定的模型。解决这个问题的一个简单方法是两级方法。我们考虑了该方法的实现方面。一个明显的替代方案是使用qm编码器,而不是使用一般的算术编码器,这样可以减少所使用的内存并提高执行速度。我们讨论了一些可能的启发式方法来提高性能。给出了利用ITU-T测试图像得到的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast implementation of two-level compression method using QM-coder
We deal with bi-level image compression. Modern methods consider the bi-level image as a high order Markovian source, and by exploiting this characteristic, can attain better performance. At a first glance, the increasing of the order of the Markovian model in the modelling process should yield a higher compression ratio, but in fact, it is not true. A higher order model needs a longer time to learn (adaptively) the statistical characteristic of the source. If the source sequence, or the bi-level image in this case, is not long enough, then we do not have a stable model. One simple way to solve this problem is the two-level method. We consider the implementation aspects of this method. Instead of using the general arithmetic coder, an obvious alternative is using the QM-coder, thus reducing the memory used and increasing the execution speed. We discuss some possible heuristics to increase the performance. Experimental results obtained with the ITU-T test images are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信