N. Susyanto, R. Veldhuis, L. Spreeuwers, C. Klaassen
{"title":"基于分数的多算法人脸识别系统的两步标定方法","authors":"N. Susyanto, R. Veldhuis, L. Spreeuwers, C. Klaassen","doi":"10.1109/ICB.2016.7550094","DOIUrl":null,"url":null,"abstract":"We propose a new method for combining multi-algorithm score-based face recognition systems, which we call the two-step calibration method. Typically, algorithms for face recognition systems produce dependent scores. The two-step method is based on parametric copulas to handle this dependence. Its goal is to minimize discrimination loss. For synthetic and real databases (NIST-face and Face3D) we will show that our method is accurate and reliable using the cost of log likelihood ratio and the information-theoretical empirical cross-entropy (ECE).","PeriodicalId":308715,"journal":{"name":"2016 International Conference on Biometrics (ICB)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Two-step calibration method for multi-algorithm score-based face recognition systems by minimizing discrimination loss\",\"authors\":\"N. Susyanto, R. Veldhuis, L. Spreeuwers, C. Klaassen\",\"doi\":\"10.1109/ICB.2016.7550094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new method for combining multi-algorithm score-based face recognition systems, which we call the two-step calibration method. Typically, algorithms for face recognition systems produce dependent scores. The two-step method is based on parametric copulas to handle this dependence. Its goal is to minimize discrimination loss. For synthetic and real databases (NIST-face and Face3D) we will show that our method is accurate and reliable using the cost of log likelihood ratio and the information-theoretical empirical cross-entropy (ECE).\",\"PeriodicalId\":308715,\"journal\":{\"name\":\"2016 International Conference on Biometrics (ICB)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB.2016.7550094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2016.7550094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two-step calibration method for multi-algorithm score-based face recognition systems by minimizing discrimination loss
We propose a new method for combining multi-algorithm score-based face recognition systems, which we call the two-step calibration method. Typically, algorithms for face recognition systems produce dependent scores. The two-step method is based on parametric copulas to handle this dependence. Its goal is to minimize discrimination loss. For synthetic and real databases (NIST-face and Face3D) we will show that our method is accurate and reliable using the cost of log likelihood ratio and the information-theoretical empirical cross-entropy (ECE).