{"title":"连接语法、元胞自动机与逻辑","authors":"Théo Grente, E. Grandjean","doi":"10.4230/OASIcs.AUTOMATA.2021.8","DOIUrl":null,"url":null,"abstract":"The expressive power of the class Conj of conjunctive languages, i.e. languages generated by the conjunctive grammars of Okhotin, is largely unknown, while its restriction LinConj to linear conjunctive grammars equals the class of languages recognized by real-time one-dimensional one-way cellular automata. We prove two weakened versions of the open question Conj ⊆? RealTime1CA, where RealTime1CA is the class of languages recognized by real-time one-dimensional two-way cellular automata: 1. it is true for unary languages; 2. Conj ⊆ RealTime2OCA, i.e. any conjunctive language is recognized by a real-time two-dimensional one-way cellular automaton. Interestingly, we express the rules of a conjunctive grammar in two Horn logics, which exactly characterize the complexity classes RealTime1CA and RealTime2OCA. 2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory of computation → Formal languages and automata theory","PeriodicalId":124625,"journal":{"name":"International Workshop on Cellular Automata and Discrete Complex Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conjunctive Grammars, Cellular Automata and Logic\",\"authors\":\"Théo Grente, E. Grandjean\",\"doi\":\"10.4230/OASIcs.AUTOMATA.2021.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The expressive power of the class Conj of conjunctive languages, i.e. languages generated by the conjunctive grammars of Okhotin, is largely unknown, while its restriction LinConj to linear conjunctive grammars equals the class of languages recognized by real-time one-dimensional one-way cellular automata. We prove two weakened versions of the open question Conj ⊆? RealTime1CA, where RealTime1CA is the class of languages recognized by real-time one-dimensional two-way cellular automata: 1. it is true for unary languages; 2. Conj ⊆ RealTime2OCA, i.e. any conjunctive language is recognized by a real-time two-dimensional one-way cellular automaton. Interestingly, we express the rules of a conjunctive grammar in two Horn logics, which exactly characterize the complexity classes RealTime1CA and RealTime2OCA. 2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory of computation → Formal languages and automata theory\",\"PeriodicalId\":124625,\"journal\":{\"name\":\"International Workshop on Cellular Automata and Discrete Complex Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Cellular Automata and Discrete Complex Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/OASIcs.AUTOMATA.2021.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Cellular Automata and Discrete Complex Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.AUTOMATA.2021.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The expressive power of the class Conj of conjunctive languages, i.e. languages generated by the conjunctive grammars of Okhotin, is largely unknown, while its restriction LinConj to linear conjunctive grammars equals the class of languages recognized by real-time one-dimensional one-way cellular automata. We prove two weakened versions of the open question Conj ⊆? RealTime1CA, where RealTime1CA is the class of languages recognized by real-time one-dimensional two-way cellular automata: 1. it is true for unary languages; 2. Conj ⊆ RealTime2OCA, i.e. any conjunctive language is recognized by a real-time two-dimensional one-way cellular automaton. Interestingly, we express the rules of a conjunctive grammar in two Horn logics, which exactly characterize the complexity classes RealTime1CA and RealTime2OCA. 2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory of computation → Formal languages and automata theory