秩偏精度中的不确定性

L. Park
{"title":"秩偏精度中的不确定性","authors":"L. Park","doi":"10.1145/3015022.3015029","DOIUrl":null,"url":null,"abstract":"Information retrieval metrics that provide uncertainty intervals when faced with unjudged documents, such as Rank-Biased Precision (RBP), provide us with an indication of the upper and lower bound of the system score. Unfortunately, the uncertainty is disregarded when examining the mean over a set of queries. In this article, we examine the distribution of the uncertainty per query and averaged over all queries, under the assumption that each unjudged document has the same probability of being relevant. We also derive equations for the mean, variance, and distribution of Mean RBP uncertainty. Finally, the impact of our assumption is assessed using simulation. We find that by removing the assumption of equal probability of relevance, we obtain a scaled form of the previously defined mean and standard deviation for the distribution of Mean RBP uncertainty.","PeriodicalId":334601,"journal":{"name":"Proceedings of the 21st Australasian Document Computing Symposium","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Uncertainty in Rank-Biased Precision\",\"authors\":\"L. Park\",\"doi\":\"10.1145/3015022.3015029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information retrieval metrics that provide uncertainty intervals when faced with unjudged documents, such as Rank-Biased Precision (RBP), provide us with an indication of the upper and lower bound of the system score. Unfortunately, the uncertainty is disregarded when examining the mean over a set of queries. In this article, we examine the distribution of the uncertainty per query and averaged over all queries, under the assumption that each unjudged document has the same probability of being relevant. We also derive equations for the mean, variance, and distribution of Mean RBP uncertainty. Finally, the impact of our assumption is assessed using simulation. We find that by removing the assumption of equal probability of relevance, we obtain a scaled form of the previously defined mean and standard deviation for the distribution of Mean RBP uncertainty.\",\"PeriodicalId\":334601,\"journal\":{\"name\":\"Proceedings of the 21st Australasian Document Computing Symposium\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st Australasian Document Computing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3015022.3015029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st Australasian Document Computing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3015022.3015029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

当面对未经判断的文档时,提供不确定性间隔的信息检索度量,例如Rank-Biased Precision (RBP),为我们提供了系统分数的上界和下界的指示。不幸的是,在检查一组查询的平均值时,不确定性被忽略了。在本文中,我们将研究每个查询的不确定性分布以及所有查询的平均值,假设每个未经判断的文档具有相同的相关概率。我们还推导了平均RBP不确定性的均值、方差和分布方程。最后,使用模拟评估了我们假设的影响。我们发现,通过去除相关等概率的假设,我们获得了先前定义的平均RBP不确定性分布的均值和标准差的缩放形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty in Rank-Biased Precision
Information retrieval metrics that provide uncertainty intervals when faced with unjudged documents, such as Rank-Biased Precision (RBP), provide us with an indication of the upper and lower bound of the system score. Unfortunately, the uncertainty is disregarded when examining the mean over a set of queries. In this article, we examine the distribution of the uncertainty per query and averaged over all queries, under the assumption that each unjudged document has the same probability of being relevant. We also derive equations for the mean, variance, and distribution of Mean RBP uncertainty. Finally, the impact of our assumption is assessed using simulation. We find that by removing the assumption of equal probability of relevance, we obtain a scaled form of the previously defined mean and standard deviation for the distribution of Mean RBP uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信