血管引导的三维微ct细胞网络变分分割

A. Pacureanu, C. Revol-Muller, J. Rose, Maria Sanchez Ruiz, F. Peyrin
{"title":"血管引导的三维微ct细胞网络变分分割","authors":"A. Pacureanu, C. Revol-Muller, J. Rose, Maria Sanchez Ruiz, F. Peyrin","doi":"10.1109/ISBI.2010.5490135","DOIUrl":null,"url":null,"abstract":"Advances in imaging techniques lead to nondestructive 3D visualization of biological tissue at a sub-cellular scale. As a consequence, new demands emerge to segment complex structures. For instance, synchrotron radiation micro-CT, makes it possible to image the lacunar-canalicular porosity in bone tissue. This structure contains a dense network of slender channels interconnecting the cells. Their size (~300-600 nanometers in diameter) is at the limit of the acquisition system resolution (280 nm) making their detection difficult. In this work is proposed a variational region growing segmentation method adapted for cellular networks. To control the evolution of the segmentation through tubular structures a vesselness map is introduced in the expression of the functional to minimize. The method is tested on synthetic images and applied to experimental data.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Vesselness-guided variational segmentation of cellular networks from 3D micro-CT\",\"authors\":\"A. Pacureanu, C. Revol-Muller, J. Rose, Maria Sanchez Ruiz, F. Peyrin\",\"doi\":\"10.1109/ISBI.2010.5490135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in imaging techniques lead to nondestructive 3D visualization of biological tissue at a sub-cellular scale. As a consequence, new demands emerge to segment complex structures. For instance, synchrotron radiation micro-CT, makes it possible to image the lacunar-canalicular porosity in bone tissue. This structure contains a dense network of slender channels interconnecting the cells. Their size (~300-600 nanometers in diameter) is at the limit of the acquisition system resolution (280 nm) making their detection difficult. In this work is proposed a variational region growing segmentation method adapted for cellular networks. To control the evolution of the segmentation through tubular structures a vesselness map is introduced in the expression of the functional to minimize. The method is tested on synthetic images and applied to experimental data.\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

成像技术的进步使生物组织在亚细胞尺度上的非破坏性三维可视化成为可能。因此,出现了分割复杂结构的新需求。例如,同步辐射微型ct可以成像骨组织中的腔隙-管状孔隙。这种结构包含一个由细长通道组成的密集网络,将细胞相互连接。它们的尺寸(直径约300-600纳米)是采集系统分辨率(280纳米)的极限,这使得它们很难被检测到。本文提出了一种适用于蜂窝网络的变分区域增长分割方法。为了控制通过管状结构分割的演变,在最小化函数的表达式中引入了容器映射。该方法在合成图像上进行了测试,并应用于实验数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vesselness-guided variational segmentation of cellular networks from 3D micro-CT
Advances in imaging techniques lead to nondestructive 3D visualization of biological tissue at a sub-cellular scale. As a consequence, new demands emerge to segment complex structures. For instance, synchrotron radiation micro-CT, makes it possible to image the lacunar-canalicular porosity in bone tissue. This structure contains a dense network of slender channels interconnecting the cells. Their size (~300-600 nanometers in diameter) is at the limit of the acquisition system resolution (280 nm) making their detection difficult. In this work is proposed a variational region growing segmentation method adapted for cellular networks. To control the evolution of the segmentation through tubular structures a vesselness map is introduced in the expression of the functional to minimize. The method is tested on synthetic images and applied to experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信