{"title":"基于宇称空间的低温火箭发动机燃烧室故障检测与隔离","authors":"P. Van Gelder, A. Bos","doi":"10.1109/SMC-IT.2009.47","DOIUrl":null,"url":null,"abstract":"This paper presents a parity space (PS) approach for fault detection and isolation (FDI) of a cryogenic rocket engine combustion chamber. Nominal and non-nominal simulation data for three engine set points have been provided. The PS approach uses three measurements to generate residuals and a spherical transformation to map these residuals to faults. The radial co-ordinate is used for fault detection whereas the azimuthal and polar co-ordinates are used for fault isolation. Evaluation criteria are missed alarms, false alarms, and fault detection time. Although the approach needs a different residual generation method to become more robust, it works very well when compared with the other FDI approaches.","PeriodicalId":422009,"journal":{"name":"2009 Third IEEE International Conference on Space Mission Challenges for Information Technology","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Detection and Isolation of a Cryogenic Rocket Engine Combustion Chamber Using a Parity Space Approach\",\"authors\":\"P. Van Gelder, A. Bos\",\"doi\":\"10.1109/SMC-IT.2009.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a parity space (PS) approach for fault detection and isolation (FDI) of a cryogenic rocket engine combustion chamber. Nominal and non-nominal simulation data for three engine set points have been provided. The PS approach uses three measurements to generate residuals and a spherical transformation to map these residuals to faults. The radial co-ordinate is used for fault detection whereas the azimuthal and polar co-ordinates are used for fault isolation. Evaluation criteria are missed alarms, false alarms, and fault detection time. Although the approach needs a different residual generation method to become more robust, it works very well when compared with the other FDI approaches.\",\"PeriodicalId\":422009,\"journal\":{\"name\":\"2009 Third IEEE International Conference on Space Mission Challenges for Information Technology\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Third IEEE International Conference on Space Mission Challenges for Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMC-IT.2009.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third IEEE International Conference on Space Mission Challenges for Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMC-IT.2009.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fault Detection and Isolation of a Cryogenic Rocket Engine Combustion Chamber Using a Parity Space Approach
This paper presents a parity space (PS) approach for fault detection and isolation (FDI) of a cryogenic rocket engine combustion chamber. Nominal and non-nominal simulation data for three engine set points have been provided. The PS approach uses three measurements to generate residuals and a spherical transformation to map these residuals to faults. The radial co-ordinate is used for fault detection whereas the azimuthal and polar co-ordinates are used for fault isolation. Evaluation criteria are missed alarms, false alarms, and fault detection time. Although the approach needs a different residual generation method to become more robust, it works very well when compared with the other FDI approaches.