自动驾驶汽车视觉系统道路环境识别

Jing Peng, C. Shi
{"title":"自动驾驶汽车视觉系统道路环境识别","authors":"Jing Peng, C. Shi","doi":"10.1109/ITST.2007.4295846","DOIUrl":null,"url":null,"abstract":"A road environment recognition system is presented. First, lane lines are detected based on our proposed Gaussian comparison function. Then a road prospective model is built on the basis of a new Gaussian semi-sphere approach to detect vanishing point. Using this model, three road parameters are computed, i.e. vehicle's transverse bias, yawing angle and the road slope angle. Obstacles such as vehicles in front of the current lane are also extracted. Simulation experiments prove the effectiveness of the system.","PeriodicalId":106396,"journal":{"name":"2007 7th International Conference on ITS Telecommunications","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Recognizing road environment for vision system on autonomous vehicles\",\"authors\":\"Jing Peng, C. Shi\",\"doi\":\"10.1109/ITST.2007.4295846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A road environment recognition system is presented. First, lane lines are detected based on our proposed Gaussian comparison function. Then a road prospective model is built on the basis of a new Gaussian semi-sphere approach to detect vanishing point. Using this model, three road parameters are computed, i.e. vehicle's transverse bias, yawing angle and the road slope angle. Obstacles such as vehicles in front of the current lane are also extracted. Simulation experiments prove the effectiveness of the system.\",\"PeriodicalId\":106396,\"journal\":{\"name\":\"2007 7th International Conference on ITS Telecommunications\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 7th International Conference on ITS Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITST.2007.4295846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th International Conference on ITS Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITST.2007.4295846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种道路环境识别系统。首先,基于我们提出的高斯比较函数检测车道线。然后,基于一种新的高斯半球方法建立了道路前景模型来检测消失点。利用该模型计算了车辆横向偏角、偏航角和道路坡度角三个道路参数。障碍物,如当前车道前面的车辆也被提取出来。仿真实验证明了该系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognizing road environment for vision system on autonomous vehicles
A road environment recognition system is presented. First, lane lines are detected based on our proposed Gaussian comparison function. Then a road prospective model is built on the basis of a new Gaussian semi-sphere approach to detect vanishing point. Using this model, three road parameters are computed, i.e. vehicle's transverse bias, yawing angle and the road slope angle. Obstacles such as vehicles in front of the current lane are also extracted. Simulation experiments prove the effectiveness of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信