利用引力搜索算法对web使用数据进行双聚类

V. Diviya Prabha, R. Rathipriya
{"title":"利用引力搜索算法对web使用数据进行双聚类","authors":"V. Diviya Prabha, R. Rathipriya","doi":"10.1109/ICPRIME.2013.6496722","DOIUrl":null,"url":null,"abstract":"In this paper, an efficient and new algorithm for biclustering of web usage data is presented, which is based on gravitational search algorithm. In the proposed algorithm, called BIC-GSA, the gravitational search algorithm is used to find a near optimal solution for biclustering problem. The benchmark clickstream dataset from UCI repository is used to evaluate and to study the performance of the presented algorithm. The results show that the proposed algorithm can find high quality biclusters in the tested dataset.","PeriodicalId":123210,"journal":{"name":"2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Biclustering of web usage data using gravitational search algorithm\",\"authors\":\"V. Diviya Prabha, R. Rathipriya\",\"doi\":\"10.1109/ICPRIME.2013.6496722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an efficient and new algorithm for biclustering of web usage data is presented, which is based on gravitational search algorithm. In the proposed algorithm, called BIC-GSA, the gravitational search algorithm is used to find a near optimal solution for biclustering problem. The benchmark clickstream dataset from UCI repository is used to evaluate and to study the performance of the presented algorithm. The results show that the proposed algorithm can find high quality biclusters in the tested dataset.\",\"PeriodicalId\":123210,\"journal\":{\"name\":\"2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPRIME.2013.6496722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRIME.2013.6496722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种基于引力搜索算法的高效的web使用数据双聚类算法。本文提出的双聚类算法(BIC-GSA)采用引力搜索算法求解双聚类问题的近似最优解。使用UCI知识库中的基准点击流数据集来评估和研究该算法的性能。结果表明,该算法能够在测试数据集中找到高质量的双聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biclustering of web usage data using gravitational search algorithm
In this paper, an efficient and new algorithm for biclustering of web usage data is presented, which is based on gravitational search algorithm. In the proposed algorithm, called BIC-GSA, the gravitational search algorithm is used to find a near optimal solution for biclustering problem. The benchmark clickstream dataset from UCI repository is used to evaluate and to study the performance of the presented algorithm. The results show that the proposed algorithm can find high quality biclusters in the tested dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信