{"title":"不同异步度下并行异步多目标进化算法的性能比较","authors":"Tomohiro Harada, K. Takadama","doi":"10.1109/CEC.2017.7969444","DOIUrl":null,"url":null,"abstract":"This paper proposes a parallel asynchronous evolutionary algorithm (EA) with different asynchrony and verifies its effectiveness on multi-objective optimization problems. We represent such EA with different asynchrony as semi-asynchronous EA. The semi-asynchronous EA continuously evolves solutions whenever a part of solutions in the population completes their evaluations in the master-slave parallel computation environment, unlike a conventional synchronous EA, which waits for evaluations of all solutions to generate next population. To establish the semi-asynchronous EA, this paper proposes the asynchrony parameter to decide how many solutions are waited, and clarifies the effectual asynchrony related to the number of slave nodes. In the experiment, we apply the semi-asynchronous EA to NSGA-II, which is a well-known multi-objective evolutionary algorithm, and the semi-asynchronous NSGA-IIs with different asynchrony are compared with synchronous one on the multi-objective optimization benchmark problems with several variances of evaluation time. The experimental result reveals that the semi-asynchronous NSGA-II with low asynchrony has possibility to perform the best search ability than the complete asynchronous and the synchronous NSGA-II in the optimization problems with large variance of evaluation time.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Performance comparison of parallel asynchronous multi-objective evolutionary algorithm with different asynchrony\",\"authors\":\"Tomohiro Harada, K. Takadama\",\"doi\":\"10.1109/CEC.2017.7969444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a parallel asynchronous evolutionary algorithm (EA) with different asynchrony and verifies its effectiveness on multi-objective optimization problems. We represent such EA with different asynchrony as semi-asynchronous EA. The semi-asynchronous EA continuously evolves solutions whenever a part of solutions in the population completes their evaluations in the master-slave parallel computation environment, unlike a conventional synchronous EA, which waits for evaluations of all solutions to generate next population. To establish the semi-asynchronous EA, this paper proposes the asynchrony parameter to decide how many solutions are waited, and clarifies the effectual asynchrony related to the number of slave nodes. In the experiment, we apply the semi-asynchronous EA to NSGA-II, which is a well-known multi-objective evolutionary algorithm, and the semi-asynchronous NSGA-IIs with different asynchrony are compared with synchronous one on the multi-objective optimization benchmark problems with several variances of evaluation time. The experimental result reveals that the semi-asynchronous NSGA-II with low asynchrony has possibility to perform the best search ability than the complete asynchronous and the synchronous NSGA-II in the optimization problems with large variance of evaluation time.\",\"PeriodicalId\":335123,\"journal\":{\"name\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2017.7969444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance comparison of parallel asynchronous multi-objective evolutionary algorithm with different asynchrony
This paper proposes a parallel asynchronous evolutionary algorithm (EA) with different asynchrony and verifies its effectiveness on multi-objective optimization problems. We represent such EA with different asynchrony as semi-asynchronous EA. The semi-asynchronous EA continuously evolves solutions whenever a part of solutions in the population completes their evaluations in the master-slave parallel computation environment, unlike a conventional synchronous EA, which waits for evaluations of all solutions to generate next population. To establish the semi-asynchronous EA, this paper proposes the asynchrony parameter to decide how many solutions are waited, and clarifies the effectual asynchrony related to the number of slave nodes. In the experiment, we apply the semi-asynchronous EA to NSGA-II, which is a well-known multi-objective evolutionary algorithm, and the semi-asynchronous NSGA-IIs with different asynchrony are compared with synchronous one on the multi-objective optimization benchmark problems with several variances of evaluation time. The experimental result reveals that the semi-asynchronous NSGA-II with low asynchrony has possibility to perform the best search ability than the complete asynchronous and the synchronous NSGA-II in the optimization problems with large variance of evaluation time.