基于Smith-Waterman算法的高效局部形状匹配

Longbin Chen, R. Feris, M. Turk
{"title":"基于Smith-Waterman算法的高效局部形状匹配","authors":"Longbin Chen, R. Feris, M. Turk","doi":"10.1109/CVPRW.2008.4563078","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient partial shape matching method based on the Smith-Waterman algorithm. For two contours of m and n points respectively, the complexity of our method to find similar parts is only O(mn). In addition to this improvement in efficiency, we also obtain comparable accurate matching with fewer shape descriptors. Also, in contrast to arbitrary distance functions that are used by previous methods, we use a probabilistic similarity measurement, p-value, to evaluate the similarity of two shapes. Our experiments on several public shape databases indicate that our method outperforms state-of-the-art global and partial shape matching algorithms in various scenarios.","PeriodicalId":102206,"journal":{"name":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"Efficient partial shape matching using Smith-Waterman algorithm\",\"authors\":\"Longbin Chen, R. Feris, M. Turk\",\"doi\":\"10.1109/CVPRW.2008.4563078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient partial shape matching method based on the Smith-Waterman algorithm. For two contours of m and n points respectively, the complexity of our method to find similar parts is only O(mn). In addition to this improvement in efficiency, we also obtain comparable accurate matching with fewer shape descriptors. Also, in contrast to arbitrary distance functions that are used by previous methods, we use a probabilistic similarity measurement, p-value, to evaluate the similarity of two shapes. Our experiments on several public shape databases indicate that our method outperforms state-of-the-art global and partial shape matching algorithms in various scenarios.\",\"PeriodicalId\":102206,\"journal\":{\"name\":\"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2008.4563078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2008.4563078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

摘要

提出了一种基于Smith-Waterman算法的部分形状匹配方法。对于m和n个点的两个轮廓,我们的方法寻找相似部分的复杂度仅为O(mn)。除了效率的提高之外,我们还使用更少的形状描述符获得了相当精确的匹配。此外,与以前方法使用的任意距离函数不同,我们使用概率相似性度量p值来评估两个形状的相似性。我们在几个公共形状数据库上的实验表明,我们的方法在各种场景下优于最先进的全局和部分形状匹配算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient partial shape matching using Smith-Waterman algorithm
This paper presents an efficient partial shape matching method based on the Smith-Waterman algorithm. For two contours of m and n points respectively, the complexity of our method to find similar parts is only O(mn). In addition to this improvement in efficiency, we also obtain comparable accurate matching with fewer shape descriptors. Also, in contrast to arbitrary distance functions that are used by previous methods, we use a probabilistic similarity measurement, p-value, to evaluate the similarity of two shapes. Our experiments on several public shape databases indicate that our method outperforms state-of-the-art global and partial shape matching algorithms in various scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信