求解线性规划的一种具有预定义时间收敛性的不连续递归神经网络

J. Sánchez‐Torres, E. Sánchez, A. Loukianov
{"title":"求解线性规划的一种具有预定义时间收敛性的不连续递归神经网络","authors":"J. Sánchez‐Torres, E. Sánchez, A. Loukianov","doi":"10.1109/SIS.2014.7011799","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to introduce a new recurrent neural network to solve linear programming. The main characteristic of the proposed scheme is its design based on the predefined-time stability. The predefined-time stability is a stronger form of finite-time stability which allows the a priori definition of a convergence time that does not depend on the network initial state. The network structure is based on the Karush-Kuhn-Tucker (KKT) conditions and the KKT multipliers are proposed as sliding mode control inputs. This selection yields to an one-layer recurrent neural network in which the only parameter to be tuned is the desired convergence time. With this features, the network can be easily scaled from a small to a higher dimension problem. The simulation of a simple example shows the feasibility of the current approach.","PeriodicalId":380286,"journal":{"name":"2014 IEEE Symposium on Swarm Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"A discontinuous recurrent neural network with predefined time convergence for solution of linear programming\",\"authors\":\"J. Sánchez‐Torres, E. Sánchez, A. Loukianov\",\"doi\":\"10.1109/SIS.2014.7011799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to introduce a new recurrent neural network to solve linear programming. The main characteristic of the proposed scheme is its design based on the predefined-time stability. The predefined-time stability is a stronger form of finite-time stability which allows the a priori definition of a convergence time that does not depend on the network initial state. The network structure is based on the Karush-Kuhn-Tucker (KKT) conditions and the KKT multipliers are proposed as sliding mode control inputs. This selection yields to an one-layer recurrent neural network in which the only parameter to be tuned is the desired convergence time. With this features, the network can be easily scaled from a small to a higher dimension problem. The simulation of a simple example shows the feasibility of the current approach.\",\"PeriodicalId\":380286,\"journal\":{\"name\":\"2014 IEEE Symposium on Swarm Intelligence\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Swarm Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIS.2014.7011799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Swarm Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2014.7011799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

本文的目的是引入一种新的递归神经网络来解决线性规划问题。该方案的主要特点是基于预定义时间稳定性进行设计。预定义时间稳定性是有限时间稳定性的一种更强的形式,它允许先验地定义不依赖于网络初始状态的收敛时间。该网络结构基于Karush-Kuhn-Tucker (KKT)条件,并提出了KKT乘子作为滑模控制输入。这种选择产生了一个单层递归神经网络,其中唯一需要调整的参数是期望的收敛时间。有了这些特征,网络可以很容易地从一个小问题扩展到一个高维问题。通过一个简单算例的仿真验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A discontinuous recurrent neural network with predefined time convergence for solution of linear programming
The aim of this paper is to introduce a new recurrent neural network to solve linear programming. The main characteristic of the proposed scheme is its design based on the predefined-time stability. The predefined-time stability is a stronger form of finite-time stability which allows the a priori definition of a convergence time that does not depend on the network initial state. The network structure is based on the Karush-Kuhn-Tucker (KKT) conditions and the KKT multipliers are proposed as sliding mode control inputs. This selection yields to an one-layer recurrent neural network in which the only parameter to be tuned is the desired convergence time. With this features, the network can be easily scaled from a small to a higher dimension problem. The simulation of a simple example shows the feasibility of the current approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信