基于MP的图像稀疏分解新方法

Yingyun Yang, Dongxin Shi, Ke Sun, Qin Zhang
{"title":"基于MP的图像稀疏分解新方法","authors":"Yingyun Yang, Dongxin Shi, Ke Sun, Qin Zhang","doi":"10.1109/CIIP.2009.4937882","DOIUrl":null,"url":null,"abstract":"One of main problems in image sparse decomposition is the contradiction between the quality of the image and the algorithm's speed. To overcome this key problem, a new fast algorithm is presented. At first the number of atoms is decreased by making use of the atom energy property; then this algorithm converts very time-consuming inner product calculations in sparse decomposition into correlations that are fast done by FFT. Experimental results show that the performance of the proposed algorithm is effective.","PeriodicalId":349149,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Image Processing","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new approach to image sparse decomposition based on MP\",\"authors\":\"Yingyun Yang, Dongxin Shi, Ke Sun, Qin Zhang\",\"doi\":\"10.1109/CIIP.2009.4937882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of main problems in image sparse decomposition is the contradiction between the quality of the image and the algorithm's speed. To overcome this key problem, a new fast algorithm is presented. At first the number of atoms is decreased by making use of the atom energy property; then this algorithm converts very time-consuming inner product calculations in sparse decomposition into correlations that are fast done by FFT. Experimental results show that the performance of the proposed algorithm is effective.\",\"PeriodicalId\":349149,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence for Image Processing\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence for Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIIP.2009.4937882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIIP.2009.4937882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像稀疏分解的主要问题之一是图像质量与算法速度之间的矛盾。为了克服这一关键问题,提出了一种新的快速算法。首先利用原子的能量特性来减少原子的数目;然后,该算法将稀疏分解中非常耗时的内积计算转换为FFT快速完成的相关性。实验结果表明,该算法的性能是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach to image sparse decomposition based on MP
One of main problems in image sparse decomposition is the contradiction between the quality of the image and the algorithm's speed. To overcome this key problem, a new fast algorithm is presented. At first the number of atoms is decreased by making use of the atom energy property; then this algorithm converts very time-consuming inner product calculations in sparse decomposition into correlations that are fast done by FFT. Experimental results show that the performance of the proposed algorithm is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信