隐藏二叉搜索树

Saulo Queiroz, Edimar Bauer
{"title":"隐藏二叉搜索树","authors":"Saulo Queiroz, Edimar Bauer","doi":"10.5753/ETC.2018.3160","DOIUrl":null,"url":null,"abstract":"In this paper we review and enhance the Hidden Binary Search Tree (HBST) presented in [Queiroz 2017]. The HBST idea builds on the assumption an n-node self-balanced tree (e.g. AVL) requires to assure O(log2 n) worst-case search, namely, comparison between keys takes constant time. Therefore the size of each key in bits is fixed to B = O(log2 n) once n is determined, otherwise the O(1)-time comparison assumption does not hold. HBST generalizes the searchtree property such that the position of a node in the tree results from comparing its key against 'ideal' reference values associated to its ancestors. The first ideal values comes from the mid-point of the interval 0..2B. The strategy follows recursively such that the HBST height is bounded by O(B) regardless the input sequence of keys nor self-balancing procedures. In this paper we enhance the HBST to enable keys with arbitrary number of bits.","PeriodicalId":315906,"journal":{"name":"Anais do Encontro de Teoria da Computação (ETC)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hidden Binary Search Tree\",\"authors\":\"Saulo Queiroz, Edimar Bauer\",\"doi\":\"10.5753/ETC.2018.3160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we review and enhance the Hidden Binary Search Tree (HBST) presented in [Queiroz 2017]. The HBST idea builds on the assumption an n-node self-balanced tree (e.g. AVL) requires to assure O(log2 n) worst-case search, namely, comparison between keys takes constant time. Therefore the size of each key in bits is fixed to B = O(log2 n) once n is determined, otherwise the O(1)-time comparison assumption does not hold. HBST generalizes the searchtree property such that the position of a node in the tree results from comparing its key against 'ideal' reference values associated to its ancestors. The first ideal values comes from the mid-point of the interval 0..2B. The strategy follows recursively such that the HBST height is bounded by O(B) regardless the input sequence of keys nor self-balancing procedures. In this paper we enhance the HBST to enable keys with arbitrary number of bits.\",\"PeriodicalId\":315906,\"journal\":{\"name\":\"Anais do Encontro de Teoria da Computação (ETC)\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do Encontro de Teoria da Computação (ETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/ETC.2018.3160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Encontro de Teoria da Computação (ETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ETC.2018.3160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们回顾并增强了[Queiroz 2017]中提出的隐藏二叉搜索树(HBST)。HBST思想建立在n节点自平衡树(例如AVL)需要保证O(log2 n)最坏情况搜索的假设之上,即键之间的比较需要常数时间。因此,一旦n确定,每个密钥的比特大小固定为B = O(log2n),否则O(1)时间比较假设不成立。HBST泛化了搜索树属性,使得节点在树中的位置通过将其键与与其祖先相关的“理想”参考值进行比较而得到。第一个理想值来自区间0..2B的中点。该策略递归地遵循,使得无论键的输入顺序或自平衡过程如何,HBST高度都以0 (B)为界。在本文中,我们增强了HBST,使密钥具有任意位数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Hidden Binary Search Tree
In this paper we review and enhance the Hidden Binary Search Tree (HBST) presented in [Queiroz 2017]. The HBST idea builds on the assumption an n-node self-balanced tree (e.g. AVL) requires to assure O(log2 n) worst-case search, namely, comparison between keys takes constant time. Therefore the size of each key in bits is fixed to B = O(log2 n) once n is determined, otherwise the O(1)-time comparison assumption does not hold. HBST generalizes the searchtree property such that the position of a node in the tree results from comparing its key against 'ideal' reference values associated to its ancestors. The first ideal values comes from the mid-point of the interval 0..2B. The strategy follows recursively such that the HBST height is bounded by O(B) regardless the input sequence of keys nor self-balancing procedures. In this paper we enhance the HBST to enable keys with arbitrary number of bits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信