{"title":"隐藏二叉搜索树","authors":"Saulo Queiroz, Edimar Bauer","doi":"10.5753/ETC.2018.3160","DOIUrl":null,"url":null,"abstract":"In this paper we review and enhance the Hidden Binary Search Tree (HBST) presented in [Queiroz 2017]. The HBST idea builds on the assumption an n-node self-balanced tree (e.g. AVL) requires to assure O(log2 n) worst-case search, namely, comparison between keys takes constant time. Therefore the size of each key in bits is fixed to B = O(log2 n) once n is determined, otherwise the O(1)-time comparison assumption does not hold. HBST generalizes the searchtree property such that the position of a node in the tree results from comparing its key against 'ideal' reference values associated to its ancestors. The first ideal values comes from the mid-point of the interval 0..2B. The strategy follows recursively such that the HBST height is bounded by O(B) regardless the input sequence of keys nor self-balancing procedures. In this paper we enhance the HBST to enable keys with arbitrary number of bits.","PeriodicalId":315906,"journal":{"name":"Anais do Encontro de Teoria da Computação (ETC)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hidden Binary Search Tree\",\"authors\":\"Saulo Queiroz, Edimar Bauer\",\"doi\":\"10.5753/ETC.2018.3160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we review and enhance the Hidden Binary Search Tree (HBST) presented in [Queiroz 2017]. The HBST idea builds on the assumption an n-node self-balanced tree (e.g. AVL) requires to assure O(log2 n) worst-case search, namely, comparison between keys takes constant time. Therefore the size of each key in bits is fixed to B = O(log2 n) once n is determined, otherwise the O(1)-time comparison assumption does not hold. HBST generalizes the searchtree property such that the position of a node in the tree results from comparing its key against 'ideal' reference values associated to its ancestors. The first ideal values comes from the mid-point of the interval 0..2B. The strategy follows recursively such that the HBST height is bounded by O(B) regardless the input sequence of keys nor self-balancing procedures. In this paper we enhance the HBST to enable keys with arbitrary number of bits.\",\"PeriodicalId\":315906,\"journal\":{\"name\":\"Anais do Encontro de Teoria da Computação (ETC)\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do Encontro de Teoria da Computação (ETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/ETC.2018.3160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Encontro de Teoria da Computação (ETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ETC.2018.3160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we review and enhance the Hidden Binary Search Tree (HBST) presented in [Queiroz 2017]. The HBST idea builds on the assumption an n-node self-balanced tree (e.g. AVL) requires to assure O(log2 n) worst-case search, namely, comparison between keys takes constant time. Therefore the size of each key in bits is fixed to B = O(log2 n) once n is determined, otherwise the O(1)-time comparison assumption does not hold. HBST generalizes the searchtree property such that the position of a node in the tree results from comparing its key against 'ideal' reference values associated to its ancestors. The first ideal values comes from the mid-point of the interval 0..2B. The strategy follows recursively such that the HBST height is bounded by O(B) regardless the input sequence of keys nor self-balancing procedures. In this paper we enhance the HBST to enable keys with arbitrary number of bits.