走向光流泵?

O. Emile, J. Emile
{"title":"走向光流泵?","authors":"O. Emile, J. Emile","doi":"10.1515/optof-2016-0007","DOIUrl":null,"url":null,"abstract":"Abstract Most of the vibrating mechanisms of optofluidic systems are based on local heating of membranes that induces liquid flow.We report here a new type of diaphragm pump in a liquid film based on the optical radiation pressure force. We modulate a low power laser that generates, at resonance, a symmetric vibration of a free standing soap film. The film lifetime strongly varies from 56 s at low power (2 mW) to 2 s at higher power (70 mW). Since the laser beam only acts mechanically on the interfaces, such a pump could be easily implemented on delicate microequipment on chips or in biological systems.","PeriodicalId":144806,"journal":{"name":"Optofluidics, Microfluidics and Nanofluidics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards an optofluidic pump?\",\"authors\":\"O. Emile, J. Emile\",\"doi\":\"10.1515/optof-2016-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Most of the vibrating mechanisms of optofluidic systems are based on local heating of membranes that induces liquid flow.We report here a new type of diaphragm pump in a liquid film based on the optical radiation pressure force. We modulate a low power laser that generates, at resonance, a symmetric vibration of a free standing soap film. The film lifetime strongly varies from 56 s at low power (2 mW) to 2 s at higher power (70 mW). Since the laser beam only acts mechanically on the interfaces, such a pump could be easily implemented on delicate microequipment on chips or in biological systems.\",\"PeriodicalId\":144806,\"journal\":{\"name\":\"Optofluidics, Microfluidics and Nanofluidics\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optofluidics, Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/optof-2016-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optofluidics, Microfluidics and Nanofluidics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/optof-2016-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

大多数光流体系统的振动机制都是基于膜的局部加热引起液体流动。本文报道了一种基于光辐射压力力的新型液膜隔膜泵。我们调制一个低功率的激光,在共振时,产生一个独立的肥皂膜的对称振动。薄膜寿命从低功率(2 mW)的56 s到高功率(70 mW)的2 s变化很大。由于激光束只机械地作用于界面,这样的泵可以很容易地在芯片或生物系统上的精密微设备上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards an optofluidic pump?
Abstract Most of the vibrating mechanisms of optofluidic systems are based on local heating of membranes that induces liquid flow.We report here a new type of diaphragm pump in a liquid film based on the optical radiation pressure force. We modulate a low power laser that generates, at resonance, a symmetric vibration of a free standing soap film. The film lifetime strongly varies from 56 s at low power (2 mW) to 2 s at higher power (70 mW). Since the laser beam only acts mechanically on the interfaces, such a pump could be easily implemented on delicate microequipment on chips or in biological systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信