一种新的基于分块的随机自适应稀疏回波抵消算法

De-Sheng Chen, Kui-Shun Chou, Yiwen Wang
{"title":"一种新的基于分块的随机自适应稀疏回波抵消算法","authors":"De-Sheng Chen, Kui-Shun Chou, Yiwen Wang","doi":"10.1109/ICSPS.2010.5555258","DOIUrl":null,"url":null,"abstract":"The sparse nature of a network echo response makes standard NLMS based adaptive algorithms perform poorly. Fast convergence, yet low complexity, of adaptive filter design causes another challenge. In this paper, a new Stochastic Selective Partial Update Normalized Least Mean Square (SSPNLMS) algorithm is proposed. Based on an efficient stochastic search and two block-based tap selection criteria, this algorithm exploits both sparseness of the echo response and sparseness of the input signal to achieve high quality adaptive filters without much computational cost. Simulation results show our proposed algorithm has promising convergence performance for the cases of white Gaussian noise input signal and the speech signals.","PeriodicalId":234084,"journal":{"name":"2010 2nd International Conference on Signal Processing Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A new block-based stochastic adaptive algorithm for sparse echo cancellation\",\"authors\":\"De-Sheng Chen, Kui-Shun Chou, Yiwen Wang\",\"doi\":\"10.1109/ICSPS.2010.5555258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sparse nature of a network echo response makes standard NLMS based adaptive algorithms perform poorly. Fast convergence, yet low complexity, of adaptive filter design causes another challenge. In this paper, a new Stochastic Selective Partial Update Normalized Least Mean Square (SSPNLMS) algorithm is proposed. Based on an efficient stochastic search and two block-based tap selection criteria, this algorithm exploits both sparseness of the echo response and sparseness of the input signal to achieve high quality adaptive filters without much computational cost. Simulation results show our proposed algorithm has promising convergence performance for the cases of white Gaussian noise input signal and the speech signals.\",\"PeriodicalId\":234084,\"journal\":{\"name\":\"2010 2nd International Conference on Signal Processing Systems\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Signal Processing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPS.2010.5555258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPS.2010.5555258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

网络回波响应的稀疏特性使得基于NLMS的标准自适应算法表现不佳。快速收敛,但低复杂度,自适应滤波器设计带来了另一个挑战。本文提出了一种新的随机选择偏更新归一化最小均方(SSPNLMS)算法。该算法基于高效的随机搜索和两个基于块的抽头选择准则,利用回波响应的稀疏性和输入信号的稀疏性,在不耗费大量计算成本的情况下实现高质量的自适应滤波器。仿真结果表明,本文提出的算法在输入信号为高斯白噪声和语音信号的情况下都具有良好的收敛性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new block-based stochastic adaptive algorithm for sparse echo cancellation
The sparse nature of a network echo response makes standard NLMS based adaptive algorithms perform poorly. Fast convergence, yet low complexity, of adaptive filter design causes another challenge. In this paper, a new Stochastic Selective Partial Update Normalized Least Mean Square (SSPNLMS) algorithm is proposed. Based on an efficient stochastic search and two block-based tap selection criteria, this algorithm exploits both sparseness of the echo response and sparseness of the input signal to achieve high quality adaptive filters without much computational cost. Simulation results show our proposed algorithm has promising convergence performance for the cases of white Gaussian noise input signal and the speech signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信