混合Besov空间中的多元小波前导rsamnyi维数与多重分形形式

M. B. Abid, M. B. Slimane, I. Omrane, M. Turkawi
{"title":"混合Besov空间中的多元小波前导rsamnyi维数与多重分形形式","authors":"M. B. Abid, M. B. Slimane, I. Omrane, M. Turkawi","doi":"10.1142/s0219691321500478","DOIUrl":null,"url":null,"abstract":"In this paper, we first establish a general lower bound for the multivariate wavelet leaders Rényi dimension valid for any pair [Formula: see text] of functions on [Formula: see text] where [Formula: see text] belongs to the Besov space [Formula: see text] with [Formula: see text] and [Formula: see text] belongs to [Formula: see text] with [Formula: see text]. We then prove the optimality of this result for quasi all pairs [Formula: see text] in the Baire generic sense. Finally, we compute both iso-mixed and upper-multivariate Hölder spectra for all pairs [Formula: see text] in the same [Formula: see text]-set. This allows to prove (respectively, study) the Baire generic validity of the upper-multivariate (respectively, iso-multivariate) multifractal formalism based on wavelet leaders for such pairs.","PeriodicalId":158567,"journal":{"name":"Int. J. Wavelets Multiresolution Inf. Process.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate wavelet leaders Rényi dimension and multifractal formalism in mixed Besov spaces\",\"authors\":\"M. B. Abid, M. B. Slimane, I. Omrane, M. Turkawi\",\"doi\":\"10.1142/s0219691321500478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first establish a general lower bound for the multivariate wavelet leaders Rényi dimension valid for any pair [Formula: see text] of functions on [Formula: see text] where [Formula: see text] belongs to the Besov space [Formula: see text] with [Formula: see text] and [Formula: see text] belongs to [Formula: see text] with [Formula: see text]. We then prove the optimality of this result for quasi all pairs [Formula: see text] in the Baire generic sense. Finally, we compute both iso-mixed and upper-multivariate Hölder spectra for all pairs [Formula: see text] in the same [Formula: see text]-set. This allows to prove (respectively, study) the Baire generic validity of the upper-multivariate (respectively, iso-multivariate) multifractal formalism based on wavelet leaders for such pairs.\",\"PeriodicalId\":158567,\"journal\":{\"name\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219691321500478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wavelets Multiresolution Inf. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219691321500478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先建立了对[公式:见文]上的任意对[公式:见文]函数的多元小波前导r尼维有效的一般下界,其中[公式:见文]与[公式:见文]属于Besov空间[公式:见文],[公式:见文]与[公式:见文]属于[公式:见文],[公式:见文]与[公式:见文]属于[公式:见文]。然后,我们证明了在Baire一般意义下,这个结果对于拟所有对的最优性[公式:见文本]。最后,我们计算了相同[公式:见文本]集合中所有对[公式:见文本]的等混合和上多元Hölder谱。这允许证明(分别,研究)基于这些对的小波前导的上多元(分别,等多元)多重分形形式的Baire一般有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate wavelet leaders Rényi dimension and multifractal formalism in mixed Besov spaces
In this paper, we first establish a general lower bound for the multivariate wavelet leaders Rényi dimension valid for any pair [Formula: see text] of functions on [Formula: see text] where [Formula: see text] belongs to the Besov space [Formula: see text] with [Formula: see text] and [Formula: see text] belongs to [Formula: see text] with [Formula: see text]. We then prove the optimality of this result for quasi all pairs [Formula: see text] in the Baire generic sense. Finally, we compute both iso-mixed and upper-multivariate Hölder spectra for all pairs [Formula: see text] in the same [Formula: see text]-set. This allows to prove (respectively, study) the Baire generic validity of the upper-multivariate (respectively, iso-multivariate) multifractal formalism based on wavelet leaders for such pairs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信