焦化煎饼图的循环顶点(边)连通性

Xiaoqing Liu, Shuming Zhou, Hong Zhang
{"title":"焦化煎饼图的循环顶点(边)连通性","authors":"Xiaoqing Liu, Shuming Zhou, Hong Zhang","doi":"10.1142/s0129626422500062","DOIUrl":null,"url":null,"abstract":"The cyclic vertex (resp., edge) connectivity of a graph [Formula: see text], denoted by [Formula: see text] (resp., [Formula: see text]), is the minimum number of vertices (resp., edges) whose removal from [Formula: see text] results in a disconnected graph and at least two remaining components contain cycles. Thus, to determine the exact values of [Formula: see text] and [Formula: see text] is important in the reliability assessment of interconnection networks. However, the study of the cyclic vertex (edge) connectivity is less involved. In this paper, we determine the cyclic vertex (edge) connectivity of the burnt pancake graphs [Formula: see text] which is the Cayley graph of the group of signed permutations using prefix reversals as generators. By exploring the combinatorial properties and fault-tolerance of [Formula: see text], we show [Formula: see text] and [Formula: see text] for [Formula: see text]. Moreover, we determine that [Formula: see text] for [Formula: see text].","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclic Vertex (Edge) Connectivity of Burnt Pancake Graphs\",\"authors\":\"Xiaoqing Liu, Shuming Zhou, Hong Zhang\",\"doi\":\"10.1142/s0129626422500062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cyclic vertex (resp., edge) connectivity of a graph [Formula: see text], denoted by [Formula: see text] (resp., [Formula: see text]), is the minimum number of vertices (resp., edges) whose removal from [Formula: see text] results in a disconnected graph and at least two remaining components contain cycles. Thus, to determine the exact values of [Formula: see text] and [Formula: see text] is important in the reliability assessment of interconnection networks. However, the study of the cyclic vertex (edge) connectivity is less involved. In this paper, we determine the cyclic vertex (edge) connectivity of the burnt pancake graphs [Formula: see text] which is the Cayley graph of the group of signed permutations using prefix reversals as generators. By exploring the combinatorial properties and fault-tolerance of [Formula: see text], we show [Formula: see text] and [Formula: see text] for [Formula: see text]. Moreover, we determine that [Formula: see text] for [Formula: see text].\",\"PeriodicalId\":422436,\"journal\":{\"name\":\"Parallel Process. Lett.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Process. Lett.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129626422500062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129626422500062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

循环顶点(p。图的连通性[公式:见文],用[公式:见文]表示(见文)。,[公式:见文本]),是最小顶点数(见图2)。(边),其从[公式:见文本]中移除会得到一个断开的图,并且至少有两个剩余的分量包含循环。因此,确定[公式:见文]和[公式:见文]的准确值在互联网络可靠性评估中具有重要意义。然而,对循环顶点(边)连通性的研究较少。本文利用前缀反转作为生成器,确定了有符号置换群的Cayley图的烧饼图[公式:见文]的循环顶点(边)连通性。通过探索[Formula: see text]的组合特性和容错性,我们展示了[Formula: see text]的[Formula: see text]和[Formula: see text]。此外,我们确定[公式:见文本]为[公式:见文本]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclic Vertex (Edge) Connectivity of Burnt Pancake Graphs
The cyclic vertex (resp., edge) connectivity of a graph [Formula: see text], denoted by [Formula: see text] (resp., [Formula: see text]), is the minimum number of vertices (resp., edges) whose removal from [Formula: see text] results in a disconnected graph and at least two remaining components contain cycles. Thus, to determine the exact values of [Formula: see text] and [Formula: see text] is important in the reliability assessment of interconnection networks. However, the study of the cyclic vertex (edge) connectivity is less involved. In this paper, we determine the cyclic vertex (edge) connectivity of the burnt pancake graphs [Formula: see text] which is the Cayley graph of the group of signed permutations using prefix reversals as generators. By exploring the combinatorial properties and fault-tolerance of [Formula: see text], we show [Formula: see text] and [Formula: see text] for [Formula: see text]. Moreover, we determine that [Formula: see text] for [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信