根据牛顿和汉密尔顿的经典力学

J. Autschbach
{"title":"根据牛顿和汉密尔顿的经典力学","authors":"J. Autschbach","doi":"10.1093/OSO/9780190920807.003.0002","DOIUrl":null,"url":null,"abstract":"This chapter introduces classical mechanics, starting with the familiar definitions of position, momentum, velocity, acceleration force, kinetic, potential, and total energy. It is shown how the Newton equation of motion is solved for the one-dimensional harmonic oscillator, which is a point mass oscillating around the position x = 0 driven by a force that is proportional to x (Hooke’s law). Next, the minimal action principle, the Lagrange equation of motion, and the classical Hamilton function (Hamiltonian) and conjugated variables are introduced. The chapter also discusses angular momentum and rotational motion.","PeriodicalId":207760,"journal":{"name":"Quantum Theory for Chemical Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical Mechanics According to Newton and Hamilton\",\"authors\":\"J. Autschbach\",\"doi\":\"10.1093/OSO/9780190920807.003.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter introduces classical mechanics, starting with the familiar definitions of position, momentum, velocity, acceleration force, kinetic, potential, and total energy. It is shown how the Newton equation of motion is solved for the one-dimensional harmonic oscillator, which is a point mass oscillating around the position x = 0 driven by a force that is proportional to x (Hooke’s law). Next, the minimal action principle, the Lagrange equation of motion, and the classical Hamilton function (Hamiltonian) and conjugated variables are introduced. The chapter also discusses angular momentum and rotational motion.\",\"PeriodicalId\":207760,\"journal\":{\"name\":\"Quantum Theory for Chemical Applications\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Theory for Chemical Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/OSO/9780190920807.003.0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Theory for Chemical Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780190920807.003.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章介绍经典力学,从熟悉的位置、动量、速度、加速度、动能、势能和总能量的定义开始。它展示了如何求解一维谐振子的牛顿运动方程,谐振子是一个在与x成正比的力(胡克定律)的驱动下围绕x = 0位置振荡的点质量。其次,介绍了最小作用原理、拉格朗日运动方程、经典哈密顿函数(哈密顿量)和共轭变量。本章还讨论了角动量和旋转运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classical Mechanics According to Newton and Hamilton
This chapter introduces classical mechanics, starting with the familiar definitions of position, momentum, velocity, acceleration force, kinetic, potential, and total energy. It is shown how the Newton equation of motion is solved for the one-dimensional harmonic oscillator, which is a point mass oscillating around the position x = 0 driven by a force that is proportional to x (Hooke’s law). Next, the minimal action principle, the Lagrange equation of motion, and the classical Hamilton function (Hamiltonian) and conjugated variables are introduced. The chapter also discusses angular momentum and rotational motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信