通过建模布局工具获得有效的面积和延迟估计

D. Gelosh, D. Setliff
{"title":"通过建模布局工具获得有效的面积和延迟估计","authors":"D. Gelosh, D. Setliff","doi":"10.1145/217474.217562","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to deriving area and delay estimates for high level synthesis using machine learning techniques to model layout tools. This approach captures the relationships between general design features (e.g., topology, connectivity, common input, and common output) and layout concepts (e.g., relative placement). Experimentation illustrates the effectiveness of this approach for a variety of real-world designs.","PeriodicalId":422297,"journal":{"name":"32nd Design Automation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deriving Efficient Area and Delay Estimates by Modeling Layout Tools\",\"authors\":\"D. Gelosh, D. Setliff\",\"doi\":\"10.1145/217474.217562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach to deriving area and delay estimates for high level synthesis using machine learning techniques to model layout tools. This approach captures the relationships between general design features (e.g., topology, connectivity, common input, and common output) and layout concepts (e.g., relative placement). Experimentation illustrates the effectiveness of this approach for a variety of real-world designs.\",\"PeriodicalId\":422297,\"journal\":{\"name\":\"32nd Design Automation Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"32nd Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/217474.217562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/217474.217562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种利用机器学习技术对布局工具进行建模的新方法,用于推导高级综合的面积和延迟估计。这种方法捕获了一般设计特征(例如,拓扑、连接性、公共输入和公共输出)和布局概念(例如,相对放置)之间的关系。实验证明了这种方法对各种现实世界设计的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deriving Efficient Area and Delay Estimates by Modeling Layout Tools
This paper presents a novel approach to deriving area and delay estimates for high level synthesis using machine learning techniques to model layout tools. This approach captures the relationships between general design features (e.g., topology, connectivity, common input, and common output) and layout concepts (e.g., relative placement). Experimentation illustrates the effectiveness of this approach for a variety of real-world designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信