如何拟合程序占用曲线

Xiaoya Xiang, Bin Bao
{"title":"如何拟合程序占用曲线","authors":"Xiaoya Xiang, Bin Bao","doi":"10.1145/1988915.1988920","DOIUrl":null,"url":null,"abstract":"A footprint is the volume of data accessed in a time window. A complete characterization requires summarizing all footprints in all execution windows. A concise summary is the footprint curve, which gives the average footprint in windows of different lengths. The footprint curve contains information from all footprints. It can be measured in time O(n) for a trace of length n, which is fast enough for most benchmarks.\n In this paper, we outline a study on footprint curves. We propose four curve fitting methods based on the real data observed in SPEC benchmark programs.","PeriodicalId":130040,"journal":{"name":"Workshop on Memory System Performance and Correctness","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to fit program footprint curves\",\"authors\":\"Xiaoya Xiang, Bin Bao\",\"doi\":\"10.1145/1988915.1988920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A footprint is the volume of data accessed in a time window. A complete characterization requires summarizing all footprints in all execution windows. A concise summary is the footprint curve, which gives the average footprint in windows of different lengths. The footprint curve contains information from all footprints. It can be measured in time O(n) for a trace of length n, which is fast enough for most benchmarks.\\n In this paper, we outline a study on footprint curves. We propose four curve fitting methods based on the real data observed in SPEC benchmark programs.\",\"PeriodicalId\":130040,\"journal\":{\"name\":\"Workshop on Memory System Performance and Correctness\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Memory System Performance and Correctness\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1988915.1988920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Memory System Performance and Correctness","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1988915.1988920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

内存占用是在一个时间窗口内访问的数据量。完整的描述需要总结所有执行窗口中的所有占用。一个简洁的总结就是占用空间曲线,它给出了不同长度窗口的平均占用空间。占用曲线包含来自所有占用的信息。对于长度为n的跟踪,可以在O(n)时间内测量它,这对于大多数基准测试来说已经足够快了。本文概述了足迹曲线的研究。本文提出了四种基于SPEC基准程序实际观测数据的曲线拟合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to fit program footprint curves
A footprint is the volume of data accessed in a time window. A complete characterization requires summarizing all footprints in all execution windows. A concise summary is the footprint curve, which gives the average footprint in windows of different lengths. The footprint curve contains information from all footprints. It can be measured in time O(n) for a trace of length n, which is fast enough for most benchmarks. In this paper, we outline a study on footprint curves. We propose four curve fitting methods based on the real data observed in SPEC benchmark programs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信