这是机密!发明一种新的专利分类

S. Billington, Alan Hanna
{"title":"这是机密!发明一种新的专利分类","authors":"S. Billington, Alan Hanna","doi":"10.2139/ssrn.3606142","DOIUrl":null,"url":null,"abstract":"We investigate how patent classification influences the interpretation of patent statistics. Innovation researchers currently make use of various patent classification schemas, which are hard to replicate. Using machine learning techniques, we construct a transparent, replicable and adaptable patent taxonomy, and a new automated methodology for classifying patents. We then contrast our new schema with existing ones using a long-run historical patent dataset. We find quantitative analysis of patent characteristics are sensitive to the choice of classification; our interpretation of regression coefficients is schema-dependent. We suggest much of the innovation literature should be carefully interpreted in light of our findings.","PeriodicalId":125544,"journal":{"name":"ERN: Intellectual Property (Topic)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"That's Classified! Inventing a New Patent Taxonomy\",\"authors\":\"S. Billington, Alan Hanna\",\"doi\":\"10.2139/ssrn.3606142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate how patent classification influences the interpretation of patent statistics. Innovation researchers currently make use of various patent classification schemas, which are hard to replicate. Using machine learning techniques, we construct a transparent, replicable and adaptable patent taxonomy, and a new automated methodology for classifying patents. We then contrast our new schema with existing ones using a long-run historical patent dataset. We find quantitative analysis of patent characteristics are sensitive to the choice of classification; our interpretation of regression coefficients is schema-dependent. We suggest much of the innovation literature should be carefully interpreted in light of our findings.\",\"PeriodicalId\":125544,\"journal\":{\"name\":\"ERN: Intellectual Property (Topic)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Intellectual Property (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3606142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Intellectual Property (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3606142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了专利分类如何影响专利统计数据的解释。创新研究人员目前使用各种专利分类模式,这些模式很难复制。利用机器学习技术,我们构建了一个透明、可复制和适应性强的专利分类法,以及一种新的专利分类自动化方法。然后,我们使用长期历史专利数据集将新模式与现有模式进行对比。我们发现专利特征的定量分析对分类的选择较为敏感;我们对回归系数的解释是模式相关的。我们建议,应该根据我们的研究结果仔细解读许多创新文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
That's Classified! Inventing a New Patent Taxonomy
We investigate how patent classification influences the interpretation of patent statistics. Innovation researchers currently make use of various patent classification schemas, which are hard to replicate. Using machine learning techniques, we construct a transparent, replicable and adaptable patent taxonomy, and a new automated methodology for classifying patents. We then contrast our new schema with existing ones using a long-run historical patent dataset. We find quantitative analysis of patent characteristics are sensitive to the choice of classification; our interpretation of regression coefficients is schema-dependent. We suggest much of the innovation literature should be carefully interpreted in light of our findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信