基于TBB的加速Mean Shift算法的并行处理

Ling Ding, Hongyi Li
{"title":"基于TBB的加速Mean Shift算法的并行处理","authors":"Ling Ding, Hongyi Li","doi":"10.1109/IGARSS.2016.7730659","DOIUrl":null,"url":null,"abstract":"Image segmentation as a main applying field in parallel computing with high performance, its time complexity and real-time requirements of algorithm needs to continue to improve computer hardware technology and parallel computing algorithm. Mean Shift algorithm is relatively classical in image segmentation fields, which needs no prior knowledge in the process and is an unsupervised segmentation process, attracting widespread attention for its good applicability. The paper makes a parallel improvement of Mean Shift algorithm using TBB on multi-core. The paper first analyzes the most time-consuming part Mean Shift clustering in the process of Mean Shift image segmentation, then makes a parallel improvement of Mean Shift clustering base on TBB and gets a preferable accelerating effect.","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parallel processing for accelerated Mean Shift algorithm based on TBB\",\"authors\":\"Ling Ding, Hongyi Li\",\"doi\":\"10.1109/IGARSS.2016.7730659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation as a main applying field in parallel computing with high performance, its time complexity and real-time requirements of algorithm needs to continue to improve computer hardware technology and parallel computing algorithm. Mean Shift algorithm is relatively classical in image segmentation fields, which needs no prior knowledge in the process and is an unsupervised segmentation process, attracting widespread attention for its good applicability. The paper makes a parallel improvement of Mean Shift algorithm using TBB on multi-core. The paper first analyzes the most time-consuming part Mean Shift clustering in the process of Mean Shift image segmentation, then makes a parallel improvement of Mean Shift clustering base on TBB and gets a preferable accelerating effect.\",\"PeriodicalId\":179622,\"journal\":{\"name\":\"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2016.7730659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2016.7730659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像分割作为并行计算中高性能的主要应用领域,其对算法的时间复杂度和实时性要求需要不断改进计算机硬件技术和并行计算算法。Mean Shift算法是图像分割领域中比较经典的算法,该算法在分割过程中不需要先验知识,是一种无监督分割过程,因其良好的适用性而受到广泛关注。本文利用TBB在多核上对Mean Shift算法进行了并行改进。本文首先分析了Mean Shift图像分割过程中最耗时的部分Mean Shift聚类,然后基于TBB对Mean Shift聚类进行并行改进,得到了较好的加速效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel processing for accelerated Mean Shift algorithm based on TBB
Image segmentation as a main applying field in parallel computing with high performance, its time complexity and real-time requirements of algorithm needs to continue to improve computer hardware technology and parallel computing algorithm. Mean Shift algorithm is relatively classical in image segmentation fields, which needs no prior knowledge in the process and is an unsupervised segmentation process, attracting widespread attention for its good applicability. The paper makes a parallel improvement of Mean Shift algorithm using TBB on multi-core. The paper first analyzes the most time-consuming part Mean Shift clustering in the process of Mean Shift image segmentation, then makes a parallel improvement of Mean Shift clustering base on TBB and gets a preferable accelerating effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信